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PREFACE

Twenty-five years after writing the first edition of Thermodynamics 1 am
gratified that the book is now the thermodynamic reference most fre-
quently cited in physics research literature, and that the postulational
formulation which it introduced is now widely accepted. Nevertheless
several considerations prompt this new edition and extension.

First, thermodynamics advanced dramatically in the 60s and 70s, pri-
marily in the area of critical phenomena. Although those advances are
largely beyond the scope of this book, I have attempted to at least
describe the nature of the problem and to introduce the critical exponents
and scaling functions that characterize the non-analytic behavior of ther-
modynamic functions at a second-order phase transition. This account is
descriptive and simple. It replaces the relatively complicated theory of
second-order transitions that, in the view of many students, was the most
difficult section of the first edition.

Second, 1 have attempted to improve the pedagogical attributes of the
book for use in courses from the junior undergraduate to the first year
graduate level, for physicists, engineering scientists and chemists. This
purpose has been aided by a large number of helpful suggestions from
students and instructors. Many explanations are simplified, and numerous
examples are solved explicitly. The number of problems has been ex-
panded, and partial or complete answers are given for many.

Third, an introduction to the principles of statistical mechanics has
been added. Here the spirit of the first edition has been maintained; the
emphasis is on the underlying simplicity of principles and on the central
train of logic rather than on a multiplicity of applications. For this
purpose, and to make the text accessible to advanced undergraduates, 1
have avoided explicit non-commutivity problems in quantum mechanics.
All that is required is familiarity with the fact that quantum mechanics
predicts discrete energy levels in finite systems. However, the formulation
is designed so that the more advanced student will properly interpret the
theory in the non-commutative case.
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Fourth, T have long been puzzled by certain conceptual problems iying
at the foundations of thermodynamics, and this has led me to an interpre-
tation of the “meaning” of thermodynamics. In the final chapter—an
“interpretive postlude” to the main body of the text—1I develop the thesis
that thermostatistics has its roots in the symmetries of the fundamental
laws of physics rather than in the quantitative content of those laws. The
discussion is qualitative and descriptive, seeking to establish an intuitive
framework and to encourage the student to see science as a coherent
structure in which thermodynamics has a natural and fundamental role.

Although both statistical mechanics and thermodynamics are included
in this new edition, I have attempted neither to separate them completely
nor to meld them into the undifferentiated form now popular under the
rubric of “thermal physics.” I believe that each of these extreme options is
migdirected. To divorce thermodynamics completely from its statistical
Qﬁchanieal base is to rob thermodynamics of its fundamental physical
origins. Without an insight into statistical mechanics a scientist remains
rooted in the macroscopic empiricism of the nineteenth century, cut off
from contemporary developments and from an integrated view of science.
Conversely, the amalgamation of thermodynamics and statistical me-
chanics into an undifferentiated “thermal physics” tends to eclipse ther-
modynamics. The fundamentality and profundity of statistical mechanics
are treacherously seductive; “thermal physics” courses almost perforce
give short shrift to macroscopic operational principles.* Furthermore the
amalgamation of thermodynamics and statistical mechanics runs counter
to the “principle of theoretical economy”; the principle that predictions
should be drawn from the most general and least detailed assumptions
possible. Models, endemic to statistical mechanics, should be eschewed
whenever the general methods of macroscopic thermodynamics are suffi-
cient. Such a habit of mind is hardly encouraged by an organization of the
subjects in which thermodynamics is little more than a subordinate clause.

The balancing of the two distinct components of the thermal sciences is
carried out in this book by introducing the subject at the macroscopic
level, by formulating thermodynamics so that its macroscopic postulates
are precisely and clearly the theorems of statistical mechanics, and by
frequent explanatory allusions to the interrelationships of the two compo-
nents. Nevertheless, at the option of the instructor, the chapters on
statistical mechanics can be interleaved with those on thermodynamics in
a sequence to be described. But even in that integrated option the basic
macroscopic structure of thermodynamics is established before statistical
reasoning is introduced. Such a separation and sequencing of the subjects

*The American Physical Society Committee on Applications of Physies reported [ Bulletin of the
APS, Vol 22 #10, 1233 (1971)] that a survey of industnal research leaders designated thermody-
namics above all other subjects as requiring increased emphasis in the undergraduate curriculum. That
emphasis subsequently has decreused
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preserves and emphasizes the hierarchical structure of science, organizing
physics into coherent units with clear and easily remembered interrela-
tionships. Similarly, classical mechanics is best understood as a self-
contained postulatory structure, only later to be validated as a limiting
case of quantum mechanics.

Two primary curricular options are listed in the “menu” following. In
one option the chapters are followed in sequence (Column A alone, or.
followed by all or part of column B). In the “integrated” option the menu
is followed from top to bottom. Chapter 15 is a short and elementary
statistical interpretation of entropy; it can be inserted immediately after
Chapter 1, Chapter 4, or Chapter 7.

The chapters listed below the first dotted line are freely flexible with
respect to sequence, or to inclusion or omission. To balance the concrete
and particular against more esoteric sections, instructors may choose to
insert parts of Chapter 13 (Properties of Materials) at various stages, or to
insert the Postlude (Chapter 21, Symmetry and Conceptual Foundations)
at any point in the course.

The minimal course, for junior year undergraduates, would involve the
first seven chapters, with Chapter 15 and 16 optionally included as time
permits.

Philadelphia, Pennsylvania Herbert B. Callen

Preface to the Fourth Printing

In the issuance of this fourth printing of the second edition, the publisher has
graciously given me the opportunity to correct various misprints and “minor”
errors. I am painfully aware that no error, numerical or textual, is truly minor to
the student reader. Accordingly, I am deeply grateful both to the numerous read-
ers who have called errors to my attention, and to the charitable forbearance of the
publisher in permitting their correction in this printing.

November, 1987 Herbert Callen
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2 General Principles of Classical Thermodynamics

INTRODUCTION
The Nature of Thermodynamics and the Basis of ThermoStatistics

Whether we are physicists, chemists, biologists, or engineers, our primary
interface with nature is through the properties of macroscopic matter.
Those properties are subject to universal regularities and to stringent
limitations. Subtle relationships exist among apparently unconnected
properties.

The existence of such an underlying order has far reaching implications.
Physicists and chemists familiar with that order need not confront each
new material as a virgin puzzle. Engineers are able to anticipate limita-
tions to device designs predicated on creatively imagined (but yet undis-
covered) materials with the requisite properties. And the specific form of
the underlying order provides incisive clues to the structure of fundamen-
tal physical theory.

Certain primal concepts of thermodynamics are intuitively familiar. A
metallic block released from rest near the rim of a smoothly polished
metallic bowl oscillates within the bowl, approximately conserving the
sum of potential and kinetic energies. But the block eventually comes to
rest at the bottom of the bowl. Although the mechanical energy appears to
have vanished, an observable effect is wrought upon the material of the
bowl and block; they are very slightly, but perceptibly, “warmer.” Even
before studying thermodynamics, we are qualitatively aware that
the mechanical energy has merely been converted to another form, that
the fundamental principle of energy conservation is preserved, and
that the physiological sensation of “warmth” is associated with the
thermodynamic concept of “temperature.”

Vague and undefined as these observations may be, they nevertheless
reveal a notable dissimilarity between thermodynamics and the other
branches of classical science. Two prototypes of the classical scientific
paradigm are mechanics and electromagnetic theory. The former ad-
dresses itself to the dynamics of particles acted upon by forces, the latter
to the dynamics of the fields that mediate those forces. In each of these
cases a new “law” is formulated—for mechanics it is Newton’s Law (or
Lagrange or Hamilton’s more sophisticated variants); for electromag-
netism it is the Maxwell equations. In either case it remains only to
explicate the consequences of the law.

Thermodynamics is quite different. It neither claims a unique domain of
systems over which it asserts primacy, nor does it introduce a new
fundamental law analogous to Newton’s or Maxwell’s equations. In
contrast to the specificity of mechanics and electromagnetism, the hall-
mark of thermodynamics is generality. Generality first in the sense that
thermodynamics applies to all types of systems in macroscopic aggrega-
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tion, and second in the sense that thermodynamics does not predict
specific numerical values for observable quantities. Instead, thermody-
namics sets limits (inequalities) on permissible physical processes, and it
establishes relationships among apparently unrelated properties.

The contrast between thermodynamics and its counterpart sciences
raises fundamental questions which we shall address directly only in the
final chapter. There we shall see that whereas thermodynamics is not
based on a new and particular law of nature, it instead reflects a
commonality or universal feature of all laws. In brief, thermodynamics is
the study of the restrictions on the possible properties of matter that follow
from the symmetry properties of the fundamental laws of physics.

The connection between the symmetry of fundamental laws and the
macroscopic properties of matter is not trivially evident, and we do not
attempt to derive the latter from the former. Instead we follow the
postulatory formulation of thermodynamics developed in the first edition
of this text, returning to an interpretive discussion of symmetry origins in
Chapter 21. But even the preliminary assertion of this basis of thermody-
namics may help to prepare the reader for the somewhat uncommon form
of thermodynamic theory. Thermodynamics inherits its universality, it
nonmetric nature, and its emphasis on relationships from its symmetry
parentage.






THE PROBLEM AND THE POSTULATES

1-1 THE TEMPORAL NATURE OF
MACROSCOPIC MEASUREMENTS

Perhaps the most striking feature of macroscopic matter is the incredi-
ble simplicity with which it can be characterized. We go to a pharmacy
and request one liter of ethyl alcohol, and that meager specification is
pragmatically sufficient. Yet from the atomistic point of view, we have
specified remarkably little. A complete mathematical characterization of
the system would entail the specification of coordinates and momenta for
each molecule in the sample, plus sundry additional variables descriptive
of the internal state of each molecule—altogether at least 102* numbers to
describe the liter of alcohol! A computer printing one coordinate each
microsecond would require 10 billion years—the age of the universe—to
list the atomic coordinates. Somehow, among the 10?* atomic coordinates,
or linear combinations of them, all but a few are macroscopically irrele-
vant. The pertinent few emerge as macroscopic coordinates, or *“thermody-
namic coordinates.”

Like all sciences, thermodynamics is a description of the results to be
obtained in particular types of measurements. The character of the
contemplated measurements dictates the appropriate descriptive variables;
these variables, in turn, ordain the scope and structure of thermodynamic
theory.

The key to the simplicity of macroscopic description, and the criterion
for the choice of thermodynamic coordinates, lies in two attributes of
macroscopic measurement. Macroscopic measurements are extremely slow
on the atomic scale of time, and they are extremely coarse on the atomic
scale of distance.

While a macroscopic measurement is being made, the atoms of a system
go through extremely rapid and complex motions. To measure the length
of a bar of metal we might choose to calibrate it in terms of the
wavelength of yellow light, devising some arrangement whereby reflection

<



6 The Problem and the Postulutes

from the end of the bar produces interference fringes. These fringes are
then to be photographed and counted. The duration of the measurement
is determined by the shutter speed of the camera— typically on the order
of one hundredth of a second. But the characteristic period of vibration of
the atoms at the end of the bar is on the order of 10~ !* seconds!

A macroscopic observation cannot respond to those myriads of atomic
coordinates which vary in time with typical atomic periods. Only those few
particular combinations of atomic coordinates that are essentially time
independent are macroscopically observable.

The word essentially is an important qualification. In fact we are able to
observe macroscopic processes that are almost, but not quite, time inde-
pendent. With modest difficulty we might observe processes with time
scales on the order of 107 s or less. Such observable processes are still
enormously slow relative to the atomic scale of 10 ° s. It is rational then
to first consider the limiting case and to erect a theory of time-indepen-
dent phenomena. Such a theory 1s thermodynamics.

By definition, suggested by the nature of macroscopic observations, ther-
modynamics describes only static states of macroscopic systems.

Of all the 102 atomic coordinates, or combinations thereof, only a few
are time independent.

Quantities subject to conservation principles are the most obvious
candidates as time-independent thermodynamic coordinates: the energy,
each component of the total momentum, and each component of the total
angular momentum of the system. But there are other time-independent
thermodynamic coordinates, which we shall enumerate after exploring the
spatial nature of macroscopic measurement.

1-2 THE SPATIAL NATURE OF
MACROSCOPIC MEASUREMENTS

Macroscopic measurements are not only extremely slow on the atomic
scale of time, but they are correspondingly coarse on the atomic scale of
distance. We probe our system always with “blunt instruments.” Thus an
optical observation has a resolving power defined by the wavelength of
light, which is on the order of 1000 interatomic distances. The smallest
resolvable volume contains approximately 10° atoms! Macroscopic ob-
servations sense only coarse spatzal averages of atomic coordinates.

The two types of averaging implicit in macroscopic observations to-
gether effect the enormous reduction in the number of pertinent variables,
from the initial 102 atomic coordinates to the remarkably small number
of thermodynamic coordinates. The manner of reduction can be il-
lustrated schematically by considering a simple model system, as shown in
Fig. 1.1. The model system consists not of 102 atoms, but of only 9
These atoms are spaced along a one-dimensional line, are constrained to
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FIGURE 11

Three normal modes of oscillation in a nine-atom model system. The wave lengths of the
three modes are four, eight and sixteen interatomic distances. The dotted curves are a
transverse representation of the longitudinal displacements.

move only along that line, and interact by linear forces (as if connected by
springs).

The motions of the individual atoms are strongly coupled, so the atoms
tend to move in organized patterns called normal modes. Three such
normal modes of motion are indicated schematically in Fig. 1.1. The
arrows indicate the displacements of the atoms at a particular moment;
the atoms oscillate back and forth, and half a cycle later all the arrows
would be reversed.

Rather than describe the atomic state of the system by specifying the
position of each atom, it is more convenient (and mathematically equiv-
alent) to specify the instantaneous amplitude of each normal mode. These
amplitudes are called normal coordinates, and the number of normal
coordinates is exactly equal to the number of atomic coordinates.

In a “macroscopic” system composed of only nine atoms there is no
precise distinction between “macroscopic” and “atomic” observations.
For the purpose of illustration, however, we think of a macroscopic
observation as a kind of “blurred” observation with low resolving power;
the spatial coarseness of macroscopic measurements is qualitatively analo-
gous to visual observation of the system through spectacles that are
somewhat out of focus. Under such observation the fine structure of the
first two modes in Fig. 1.1 is unresolvable, and these modes are rendered
unobservable and macroscopically irrelevant. The third mode, however,
corresponds to a relatively homogeneous net expansion (or contraction) of
the whole system. Unlike the first two modes, it is easily observable
through “blurring spectacles.” The amplitude of this mode describes the
length (or volume, in three dimensions) of the system. The length (or
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volume) remains as a thermodynamic variable, undestroyed by the spatial
averaging, because of its spatially homogeneous (long wavelength) structure.

The time averaging associated with macroscopic measurements aug-
ments these considerations. Each of the normal modes of the system has a
characteristic {requency, the frequency being smaller for modes of longer
wavelength. The frequency of the third normal mode in Fig. 1.1 is the
lowest of those shown, and if we were to consider systems with very large
numbers of atoms, the frequency of the longest wavelength mode would
approach zero (for reasons to be explored more fully in Chapter 21). Thus
all the short wavelength modes are lost in the time averaging, but the long
wavelength mode corresponding to the “volume’ is so slow that it survives
the time averaging as well as the spatial averaging.

This simple example illustrates a very general result. Of the enormous
number of atomic coordinates, a very few, with unique symmetry proper-
ties, survive the statistical averaging associated with a transition to a
macroscopic description. Certain of these surviving coordinates are me-
chanical in nature—they are volume, parameters descriptive of the shape
(components of elastic strain), and the like. Other surviving coordinates
are electrical in nature—they are electric dipole moments, magnetic dipole
moments, various multipole moments, and the like. The study of mechanics
(including elasticity) is the study of one set of surviving coordinates. The
subject of electricity (including electrostatics, magnetostatics, and ferromag-
netism) is the study of another set of surviving coordinates.

Thermodynamics, in contrast, is concerned with the macroscopic conse-
quences of the myriads of atomic coordinates that, by virtue of the coarseness
of macroscopic observations, do not appear explicitly in a macroscopic
description of a system.

Among the many consequences of the “hidden” atomic modes of
motion, the most evident is the ability of these modes to act as a
repository for energy. Energy transferred via a “mechanical mode” (i.e.,
one associated with a mechanical macroscopic coordinate) is called me-
chanical work. Energy transferred via an “electrical mode” is called electri-
cal work. Mechanical work is typified by the term —PdV (P is pressure,
V' is volume), and electrical work is typified by the term —E_ d% (E, is
electric field, 2 is electric dipole moment). These energy terms and
various other mechanical and electrical work terms are treated fully in the
standard mechanics and electricity references. But it is equally possible to
transfer energy via the hidden atomic modes of motion as well as via those that
happen to be macroscopically observable. An energy transfer via .he hidden
atomic modes is called heat. Of course this descriptive characterization of
heat is not a sufficient basis for the formal development of thermody-
namics, and we shall soon formulate an appropriate operational defini-
tion.

With this contextual perspective we proceed to certain definitions and
conventions needed for the theoretical development.
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1-3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS

Thermodynamics is a subject of great generality, applicable to systems
of elaborate structure with all manner of complex mechanical, electrical,
and thermal properties. We wish to focus our chief attention on the
thermal properties. Therefore it is convenient to idealize and simplify the
mechanical and electrical properties of the systems that we shall study
initially. Similarly, in mechanics we consider uncharged and unpolarized
systems; whereas in electricity we consider systems with no elastic com-
pressibility or other mechanical attributes. The generality of either subject
is not essentially reduced by this idealization, and after the separate
content of each subject has been studied it is a simple matter to combine
the theories to treat systems of simultaneously complicated electrical and
mechanical properties. Similarly, in our study of thermodynamics we
idealize our systems so that their mechanical and electrical properties are
almost trivially simple. When the essential content of thermodynamics has
thus been developed, it again is a simple matter to extend the analysis to
systems with relatively complex mechanical and electrical structure. The
essential point to be stressed is that the restrictions on the types of
systems considered in the following several chapters are not basic limita-
tions on the generality of thermodynamic theory but are adopted merely
for simplicity of exposition.

We (temporarily) restrict our attention to simple systems, defined as
systems that are macroscopically homogeneous, isotropic, and uncharged,
that are large enough so that surface effects can be neglected, and that are
not acted on by electric, magnetic, or gravitational fields.

For such a simple system there are no macroscopic electric coordinates
whatsoever. The system is uncharged and has neither electric nor magnetic
dipole, quadrupole, or higher-order moments. All elastic shear compo-
nents and other such mechanical parameters are zero. The volume V' does
remain as a relevant mechanical parameter. Furthermore, a simple system
has a definite chemical composition which must be described by an
appropriate set of parameters. One reasonable set of composition parame-
ters is the numbers of molecules in each of the chemically pure compo-
nents of which the system is a mixture. Alternatively, to obtain numbers
of more convenient size, we adopt the mole numbers, defined as the actual
number of each type of molecule divided by Avogadro’s number (N, =
6.02217 x 10%).

This definition of the mole number refers explicitly to the “number of
molecules,” and it therefore lies outside the boundary of purely macro-
scopic physics. An equivalent definition which avoids the reference to
molecules simply designates 12 grams as the molar mass of the isotope
12C. The molar masses of other isotopes are then defined to stand in the
same ratio as the conventional “atomic masses,” a partial list of which is
given in Table 1.1.
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TABLE 11
Atomic Masses (g) of Some Naturally
Occurring Elements (Mixtures of Isotopes)®

H 1.0080 F 18.9984
Li 6.941 Na 22.9898
C 12.011 Al 26.9815
N 14.0067 S 32.06
0] 15.9994 Ci 35.453

“ As adopted by the Internatnonal Uruon of Pure and
Applied Chemistry, 1969

If a system is a mixture of r chemical components, the r ratios
N/ N) (k=1,2,...,r) are called the mole fractions. The sum of all
r mole fractions is unity. The quantity V/(ZJ’,,INJ) is called the molar
volume.

The macroscopic parameters V, N, N,, ..., N, have a common property
that will prove to be quite significant. Suppose that we are given two
identical systems and that we now regard these two systems taken together
as a single system. The value of the volume for the composite systemn is
then just twice the value of the volume for a single subsystem. Similarly,
each of the mole numbers of the composite system is twice that for a
single subsystem. Parameters that have values in a composite system equal
to the sum of the values in each of the subsystems are called extensive
parameters. Extensive parameters play a key role throughout thermody-
namic theory.

PROBLEMS

1.3-1. One tenth of a kilogram of NaCl and 0.15 kg of sugar (C,,H,,0,,) are
dissolved in 0.50 kg of pure water. The volume of the resultant thermodynamic
system is 0.55 X 10" * m*. What are the mole numbers of the three components of
the system? What are the mole fractions? What 1s the molar volume of the
system? It is sufficient to carry the calculations only to two significant figures.

Answer:
Mole fraction of NaCl = 0.057;
molar volume = 18 X 10" *m¥mole.

1.3-2. Naturally occurring boron has an atomic mass of 10.811 g. It is a mixture
of the isotopes 1°B with an atomic mass of 10.0129 g and B with an atomic mass
of 11.0093 g. What is the mole fraction of 1°B in the mixture?

1.3-3. Twenty cubic centimeters each of ethyl alcohol (C,H,OH; density = 0.79
g/cm’), methyl alcohol (CH,OH; density = 0.81 g/cm’), and water (H,O:
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density = 1 g/cm’) are mixed together. What are the mole numbers and mole
fractions of the three components of the system?

Answer:
mole fractions = 0.17, 0.26, 0.57

1.3-4. A 0.01 kg sample is composed of S0 molecular percent H,, 30 molecular
percent HD (hydrogen deuteride), and 20 molecular percent D,. What additional
mass of D, must be added if the mole fraction of D, in the final mixture 1s to be
0.3?

1.3-5. A sqlution of sugar (C,,H,,0,,) in water is 20% sugar by weight. What is
the mole fraction of sugar in the solution?

1.3-6. An aqueous solution of an unidentified solute has a total mass of 0.1029
kg. The mole fraction of the solute is 0.1. The solution is diluted with 0.036 kg of
water, after which the mole fraction of the solute is 0.07. What would be a
reasonable guess as to the chemical identity of the solute?

1.3-7. One tenth of a kg of an aqueous solution of HCl is poured into 0.2 kg of an
aqueous solution of NaOH. The mole fraction of the HCI solution was 0.1,
whereas that of the NaOH solution was 0.25. What are the mole fractions of each
of the components in the solution after the chemical reaction has come to
completion?

Answer:
tzo = NHIO/N = 0.84

1-4 THE INTERNAL ENERGY

The development of the principle of conservation of energy has been
one of the most significant achievements in the evolution of physics. The
present form of the principle was not discovered in one magnificent stroke
of insight but was slowly and laboriously developed over two and a half
centuries. The first recognition of a conservation principle, by Leibniz in
1693, referred only to the sum of the kinetic energy (3 mp?) and the
potential energy (mgh) of a simple mechanical mass point in the terrestrial
gravitational field. As additional types of systems were considered the
established form of the conservation principle repeatedly failed, but in
each case it was found possible to revive it by the addition of a new
mathematical term—a “new kind of energy.” Thus consideration of
charged systems necessitated the addition of the Coulomb interaction
energy (Q,0,/r) and eventually of the energy of the electromagnetic field.
In 1905 Einstein extended the principle to the relativistic region, adding
such terms as the relativistic rest-mass energy. In the 1930s Enrico Fermi
postulated the exictenca nf n mans mamet1 300
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purpose of retaining the energy conservation principle in nuclear reac-
tions. The principle of energy conservation is now seen as a reflection of
the (presumed) fact that the fundamental laws of physics are the same
today as they were eons ago, or as they will be in the remote future; the
laws of physics are unaltered by a shift in the scale of time (r — ¢t +
constant). Of this basis for energy conservation we shall have more to say
in Chapter 21. Now we simply note that the energy conservation principle
is one of the most fundamental, general, and significant principles of
physical theory.

Viewing a macroscopic system as an agglomerate of an enormous
number of electrons and nuclei, interacting with complex but definite
forces to which the energy conservation principle applies, we conclude
that macroscopic systems have definite and precise energies, subject to a
definite conservation principle. That is, we now accept the existence of a
well-defined energy of a thermodynamic system as a macroscopic mani-
festation of a conservation law, highly developed, tested to an extreme
precision, and apparently of complete generality at the atomic level.

The foregoing justification of the existence of a thermodynamic energy
function is quite different from the historical thermodynamic method.
Because thermodynamics was developed largely before the atomic hy-
pothesis was accepted, the existence of a conservative macroscopic energy
function had to be demonstrated by purely macroscopic means. A signifi-
cant step in that direction was taken by Count Rumford in 1798 as he
observed certain thermal effects associated with the boring of brass
cannons. Sir Humphry Davy, Sadi Carnot, Robert Mayer, and, finally
(between 1840 and 1850), James Joule carried Rumford’s initial efforts to
their logical fruition. The history of the concept of heat as a form of
energy transfer is unsurpassed as a case study in the tortuous development
of scientific theory, as an illustration of the almost insuperable inertia
presented by accepted physical doctrine, and as a superb tale of human
ingenuity applied to a subtle and abstract problem. The interested reader
is referred to The Early Development of the Concepts of Temperature and
Heat by D. Roller (Harvard University Press, 1950) or to any standard
work on the history of physics.

Although we shall not have recourse explicitly to the experiments of
Rumford and Joule in order to justify our postulate of the existence of an
energy function, we make reference to them in Section 1.7 in our discus-
sion of the measurability of the thermodynamic energy.

Only differences of energy, rather than absolute values of the energy,
have physical significance, either at the atomic level or in macroscopic
systems. It is conventional therefore to adopt some particular state of a
system as a fiducial state, the energy of which is arbitrarily taken as zero.
The energy of a system in any other state, relative to the energy of the
system in the fiducial state, is then called the thermodynamic internal
energy of the system in that state and is denoted by the symbol U. Like
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the volume and the mole numbers, the internal energy is an extensive
parameter.

1-5 THERMODYNAMIC EQUILIBRIUM

Macroscopic systems often exhibit some “memory” of their recent
history. A stirred cup of tea continues to swirl within the cup. Cold-worked
steel maintains an enhanced hardness imparted by its mechanical treat-
ment. But memory eventually fades. Turbulences damp out, internal
strains yield to plastic flow, concentration inhomogeneities diffuse to
uniformity. Systems tend to subside to very simple states, independent of
their specific history.

In some cases the evolution toward simplicity is rapid; in other cases it
can proceed with glacial slowness. But in all systems there is a tendency to
evolve toward states in which the properties are determined by intrinsic
factors and not by previously applied external influences. Such simple
terminal states are, by definition, time independent. They are called equi-
librium states.

Thermodynamics seeks to describe these simple, static “equilibrium”
states to which systems eventually evolve.

To convert this statement to a formal and precise postulate we first
recognize that an appropriate criterion of simplicity is the possibility of
description in terms of a small number of variables. It therefore seems
plausible to adopt the following postulate, suggested by experimental
observation and formal simplicity, and to be verified ultimately by the
success of the derived theory:

Postulate 1. There exist particular states (called equilibrium states) of
simple systems that, macroscopically, are characterized completely by the
internal energy U, the volume V, and the mole numbers N, N,, ..., N, of the
chemical components.

As we expand the generality of the systems to be considered, eventually
permitting more complicated mechanical and electrical properties, the
number of parameters required to characterize an equilibrium state in-
creases to include, for example, the electric dipole moment and certain
elastic strain parameters. These new variables play roles in the formalism
which are completely analogous to the role of the volume V for a simple
system.

A persistent problem of the experimentalist is to determine somehow
whether a given system actually is in an equilibrium state, to which
thermodynamic analysis can be applied. He or she can, of course, observe
whether the system is static and quiescent. But quiescence is not sufficient.
As the state is assumed to be characterized completely by the extensive
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parameters, U,V, N, N,,...,N,, it follows that the properties of the
system must be independent of the past history. This is hardly an
operational prescription for the recognition of an equilibrium state, but in
certain cases this independence of the past history is obviously rot
satisfied, and these cases give some insight into the significance of equi-
librium. Thus two pieces of chemically identical commercial steel may
have very different properties imparted by cold-working, heat treatment,
quenching, and annealing in the manufacturing process. Such systems are
clearly not in equilibrium. Similarly, the physical characteristics of glass
depend upon the cooling rate and other details of its manufacture; hence
glass is not in equilibrium.

If a system that is not in equilibrium is analyzed on the basis of a
thermodynamic formalism predicated on the supposition of equilibrium,
inconsistencies appear in the formalism and predicted results are at
variance with experimental observations. This failure of the theory is used
by the experimentalist as an a posteriori criterion for the detection of
nonequilibrium states.

In those cases in which an unexpected inconsistency arises in the
thermodynamic formalism a more incisive quantum statistical theory
usually provides valid reasons for the failure of the system to attain
equilibrium. The occasional theoretical discrepancies that arise are there-
fore of great heuristic value in that they call attention to some unsus-
pected complication in the molecular mechanisms of the system. Such
circumstances led to the discovery of ortho- and parahydrogen,! and to
the understanding of the molecular mechanism of conversion between the
two forms.

From the atomic point of view, the macroscopic equilibrium state is
associated with incessant and rapid transitions among all the atomic states
consistent with the given boundary conditions. If the transition mecha-
nism among the atomic states is sufficiently effective, the system passes
rapidly through all representative atomic states in the course of a macro-
scopic observation; such a system is in equilibrium. However, under
certain unique conditions, the mechanism of atomic transition may be
ineffective and the system may be trapped in a small subset of atypical
atomic states. Or even if the system is not completely trapped the rate of
transition may be so slow that a macroscopic measurement does not yield
a proper average over all possible atomic states. In these cases the system
is not in equilibrium. It is readily apparent that such situations are most
likely to occur in solid rather than in fluid systems, for the comparatively
high atomic mobility in fluid systems and the random nature of the

'If the two nuclei in a H, molecule have parallel angular momentum, the molecule is called
ortho-H,; if antiparallel, para-H,. The ratio of ortho-H, to para-H, in a gaseous H, system should
have a definite value in equilibrium, but this ratio may not be obtained under certain conditions The
resultant failure of H, to satisfy certain thermodynamic equations motivated the investigations of the
ortho- and para-forms of H,.
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interatomic collisions militate strongly against any restrictions of the
atomic transition probabilities.

In actuality, few systems are in absolute and true equilibrium. In
absolute equilibrium all radioactive materials would have decayed com-
pletely and nuclear reactions would have transmuted all nuclei to the most
stable of isotopes. Such processes, which would take cosmic times to
complete, generally can be ignored. A system that has completed the
relevant processes of spontaneous evolution, and that can be described by
a reasonably small number of parameters, can be considered to be in
metastable equilibrium. Such a limited equilibrium is sufficient for the
application of thermodynamics.

In practice the criterion for equilibrium is circular. Operationally, a
system is in an equilibrium state if its properties are consistently described by
thermodynamic theory!

It is important to reflect upon the fact that the circular character of
thermodynamics is not fundamentally different from that of mechanics. A
particle of known mass in a known gravitational field might be expected
to move in a specific trajectory; if it does not do so we do not reject the
theory of mechanics, but we simply conclude that some additional force
acts on the particle. Thus the existence of an electrical charge on the
particle, and the associated relevance of an electrical force, cannot be
known a priori. It is inferred only by circular reasoning, in that dynamical
predictions are incorrect unless the electric contribution to the force is
included. Our model of a mechanical system (including the assignment of
its mass, moment of inertia, charge, dipole moment, etc.) is “correct” if it
yields successful predictions.

1-6 WALLS AND CONSTRAINTS

A description of a thermodynamic system requires the specification of
the “walls” that separate it from the surroundings and that provide its
boundary conditions. It is by means of manipulations of the walls that the
extensive parameters of the system are altered and processes are initiated.

The processes arising by manipulations of the walls generally are
associated with a redistribution of some quantity among various systems
or among various portions of a single system. A formal classification of
thermodynamic walls accordingly can be based on the property of the
walls in permitting or preventing such redistributions. As a particular
illustration, consider two systems separated by an internal piston within a
closed, rigid cylinder. If the position of the piston is rigidly fixed the
“wall” prevents the redistribution of volume between the two systems, but
if the piston is left free such a redistribution is permitted. The cylinder
and the rigidly fixed piston may be said to constitute a wall restrictive
with respect to the volume, whereas the cylinder and the movable piston
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may be said to constitute a wall nonrestrictive with respect to the volume.
In general, a wall that constrains an extensive parameter of a system to
have a definite and particular value is said to be restrictive with respect to
that parameter, whereas a wall that permits the parameter to change freely
is said to be nonrestrictive with respect to that parameter.

A wall that is impermeable to a particular chemical component is
restrictive with respect to the corresponding mole number; whereas a
permeable membrane is nonrestrictive with respect to the mole number.
Semipermeable membranes are restrictive with respect to certain mole
numbers and nonrestrictive with respect to others. A wall with holes in it
is nonrestrictive with respect to all mole numbers.

The existence of walls that are restrictive with respect to the energy is
associated with the larger problem of measurability of the energy, to
which we now turn our attention.

1-7 MEASURABILITY OF THE ENERGY

On the basis of atomic considerations, we have been led to accept the
existence of a macroscopic conservative energy function. In order that this
energy function may be meaningful in a practical sense, however, we must
convince ourselves that it is macroscopically controllable and measurable.
We shall now show that practical methods of measurement of the energy
do exist, and in doing so we shall also be led to a quantitative operational
definition of heat.

An essential prerequisite for the measurability of the energy is the
existence of walls that do not permit the transfer of energy in the form of
heat. We briefly examine a simple experimental situation that suggests
that such walls do indeed exist.

Consider a system of ice and water enclosed in a container. We find
that the ice can be caused to melt rapidly by stirring the system vigor-
ously. By stirring the system we are clearly transferring energy to it
mechanically, so that we infer that the melting of the ice is associated with
an input of energy to the system. If we now observe the system on a
summer day, we find that the ice spontaneously melts despite the fact that
no work is done on the system. It therefore seems plausible that energy is
being transferred to the system in the form of heat. We further observe
that the rate of melting of the ice is progressively decreased by changing
the wall surrounding the system from thin metal sheet, to thick glass, and
thence to a Dewar wall (consisting of two silvered glass sheets separated
by an evacuated interspace). This observation strongly suggests that the
metal, glass, and Dewar walls are progressively less permeable to the flow
of heat. The ingenuity of experimentalists has produced walls that are able
to reduce the melting rate of the ice to a negligible value, and such walls
are correspondingly excellent approximations to the limiting idealization
of a wall that is truly impermeable to the flow of heat.
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It 1s conventional to refer to a wall that is impermeable to the flow of
heat as adiabatic; whereas a wall that permits the flow of heat is termed
diathermal. 1f a wall allows the flux of neither work nor heat, it is
restrictive with respect to the energy. A system enclosed by a wall that is
restrictive with respect to the energy, volume, and all the mole numbers
is said to be closed.?

The existence of these several types of walls resolves the first of our
concerns with the thermodynamic energy. That is, these walls demonstrate
that the energy is macroscopically controllable. It can be trapped by
restrictive walls and manipulated by diathermal walls. If the energy of a
system is measured today, and if the system is enclosed by a wall
restrictive with respect to the energy, we can be certain of the energy of
the system tomorrow. Without such a wall the concept of a macroscopic
thermodynamic energy would be purely academic.

We can now proceed to our second concern—that of measurability of
the energy. More accurately, we are concerned with the measurability of
energy differences, which alone have physical significance. Again we
invoke the existence of adiabatic walls, and we note that for a simple
system enclosed by an impermeable adiabatic wall the only type of
permissible energy transfer is in the form of work. The theory of me-
chanics provides us with quantitative formulas for its measurement. If the
work is done by compression, displacing a piston in a cylinder, the work is
the product of force times displacement; or if the work is done by stirring,
it is the product of the torque times the angular rotation of the stirrer
shaft. In either case, the work is well defined and measurable by the
theory of mechanics. We conclude that we are able to measure the energy
difference of two states provided that one state can be reached from the
other by some mechanical process while the system is enclosed by an
adiabatic impermeable wall.

The entire matter of controllability and measurability of the energy can
be succinctly stated as follows: There exist walls, called adiabatic, with the
property that the work done in taking an adiabatically enclosed system
berween two given states is determined entirely by the states, independent of
all external conditions. The work done is the difference in the internal energy
of the two states.

As a specific example suppose we are given an equilibrium system
composed of ice and water enclosed in a rigid adiabatic impermeable wall.
Through a small hole in this wall we pass a thin shaft carrying a propellor
blade at the inner end and a crank handle at the outer end. By turning the
crank handle we can do work on the system. The work done is equal to
the angular rotation of the shaft multiplied by the viscous torque. After
turning the shaft for a definite time the system is allowed to come to a
new equilibrium state in which some definite amount of the ice is observed

2Thus definition of closure differs from a usage common 1n chemistry, m which closure imphes only
a wall restrictive with respect to the transfer of matter
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to have been melted. The difference in energy of the final and initial states
is equal to the work that we have done in turning the crank.

We now inquire about the possibility of starting with some arbitrary
given state of a system, of enclosing the system in an adiabatic imperme-
able wall, and of then being able to contrive some mechanical process that
will take the system to another arbitrarily specified state. To determine the
existence of such processes, we must have recourse to experimental
observation, and it is here that the great classical experiments of Joule are
relevant. His work can be interpreted as demonstrating that for a system
enclosed by an adiabatic impermeable wall any two egquilibrium states with
the same set of mole numbers N,, N,, ..., N, can be joined by some possible
mechanical process. Joule discovered that if two states (say 4 and B) are
specified it may not be possible to find a mechanical process (consistent
with an adiabatic impermeable wall) to take the system from A fo B but
that it is always possible to find either a process to take the system from
A to B or a process to take the system from B to 4. That is, for any states
A and B with equal mole numbers, either the adiabatic mechanical
process A — B or B — A exists. For our purposes either of these processes
is satisfactory. Experiment thus shows that the methods of mechanics
permit us to measure the energy difference of any two states with equal mole
numbers.

Joule’s observation that only one of the processes A - B or B —» 4
may exist is of profound significance. This asymmetry of two given states
is associated with the concept of irreversibility, with which we shall
subsequently be much concerned.

The only remaining limitation to the measurability of the energy
difference of any two states is the requirement that the states must have
equal mole numbers. This restriction is easily eliminated by the following
observation. Consider two simple subsystems separated by an imperme-
able wall and assume that the energy of each subsystem is known (relative
to appropriate fiducial states, of course). If the impermeable wall is
removed, the subsystems will intermix, but the total energy of the com-
posite system will remain constant. Therefore the energy of the final
mixed system is known to be the sum of the energies of the original
subsystems. This technique enables us to relate the energies of states with
different mole numbers.

In summary, we have seen that by employing adiabatic walls and by
measuring only mechanical work, the energy of any thermodynamic system,
relative to an appropriate reference state, can be measured.

1-8 QUANTITATIVE DEFINITION OF HEAT—UNITS

The fact that the energy difference of any two equilibrium states is
measurable provides us directly with a quantitative definition of the heat:
The heat flux to a system in any process (at constant mole numbers) is
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simply the difference in internal energy between the final and initial states,
diminished by the work done in that process.

Consider some specified process that takes a system from the initial
state A to the final state B. We wish to know the amount of energy
transferred to the system in the form of work and the amount transferred
in the form of heat in that particular process. The work is easily measured
by the method of mechanics. Furthermore, the total energy difference
U, — U, is measurable by the procedures discussed in Section 1.7. Sub-
tracting the work from the total energy difference gives us the heat flux in
the specified process.

It should be noted that the amount of work associated with different

rocesses may be different, even though each of the processes initiates in
the same state 4 and each terminates in the same state B. Similarly, the
heat flux may be different for each of the processes. But the sum of the
work and heat fluxes is just the total energy difference U, — U, and is
the same for each of the processes. In referring to the total energy flux we
therefore need specify only the initial and terminal states, but in referring
to heat or work fluxes we must specify in detail the process considered.

Restricting our attention to thermodynamic simple systems, the quasi-
static work is associated with a change in volume and is given quantita-
tively by

dw,, = —Pdv (1.1)

where P is the pressure. In recalling this equation from mechanics, we
stress that the equation applies only to quasi-static processes. A precise
definition of quasi-static processes will be given in Section 4.2, but now we
merely indicate the essential qualitative idea of such processes. Let us
suppose that we are discussing, as a particular system, a gas enclosed in a
cylinder fitted with a moving piston. If the piston is pushed in very
rapidly, the gas immediately behind the piston acquires kinetic energy and
is set into turbulent motion and the pressure is not well defined. In such a
case the work done on the system is not quasi-static and is not given by
equation 1.1. If, however, the piston is pushed in at a vanishingly slow rate
(quasi-statically), the system is at every moment in a quiescent equilibrium
state, and equation 1.1 then applies. The “infinite slowness™ of the process
is, roughly, the essential feature of a quasi-static process.

A second noteworthy feature of equation 1.1 is the sign convention, The
work is taken to be positive if it increases the energy of the system. If the
volume of the system is decreased, work is done on the system, increasing
its energy; hence the negative sign in equation 1.1.

With the quantitative expression dW,, = — PdV for the quasi-static
work, we can now give a quantitative expression for the heat flux. In an
infinitesimal quasi-static process at constant mole numbers the guasi-static
heat dQ is defined by the equation

dQ = dU — dW,, at constant mole numbers (1.2)
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or
dQ = dU + PdV at constant mole numbers (1.3)

It will be noted that we use the terms heat and heat flux interchange-
ably. Heat, like work, is only a form of energy transfer. Once energy is
transferred to a system, either as heat or as work, it is indistinguishable
from energy that might have been transferred differently. Thus, although
dQ and dW,, add together to give dU, the energy U of a state cannot be
considered as the sum of “work™ and “heat” components. To avoid this
implication we put a stroke through the symbol d: infinitesimals such as
dw,, and dQ are called imperfect differentials. The integrals of dW,, and
dQ for a particular process are the work and heat fluxes in that process;
the sum is the energy difference AU, which alone is independent of the
process.

The concepts of heat, work, and energy may possibly be clarified in
terms of a simple analogy. A certain farmer owns a pond, fed by one
stream and drained by another. The pond also receives water from an
occasional rainfall and loses it by evaporation, which we shall consider as
“negative rain.” In this analogy the pond is our system, the water within it
is the internal energy, water transferred by the streams is work, and water
transferred as rain is heat. )

The first thing to be noted is that no examination of the pond at any
time can indicate how much of the water within it came by way of the
stream and how much came by way of rain. The term rain refers only to a
method of water transfer.

Let us suppose that the owner of the pond wishes to measure the
amount of water in the pond. He can purchase flow meters to be inserted
in the streams, and with these flow meters he can measure the amount of
stream water entering and leaving the pond. But he cannot purchase a rain
meter. However, he can throw a tarpaulin over the pond, enclosing the
pond in a wall impermeable to rain (an adiabatic wall). The pond owner
consequently puts a vertical pole into the pond, covers the pond with his
tarpaulin, and inserts his flow meters into the streams. By damming one
stream and then the other, he varies the level in the pond at will, and by
consulting his flow meters he is able to calibrate the pond leve), as read on
his vertical stick, with total water content (U). Thus, by carrying out
processes on the system enclosed by an adiabatic wall, he is able to
measure the total water content of any state of his pond.

Our obliging pond owner now removes his tarpaulin to permit rain as
well as stream water to enter and leave the pond. He is then asked to
evaluate the amount of rain entering his pond during a particular day. He
proceeds simply; he reads the difference in water content from his vertical
stick, and from this he deducts the total flux of stream water as registered
by his flow meters. The difference is a quantitative measure of the rain.
The strict analogy of each of these procedures with its thermodynamic
counterpart is evident.
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Since work and heat refer to particular modes of energy transfer, each is
measured in energy units. In the cgs system the unit of energy, and hence
of work and heat, is the erg. In the mks system the unit of energy is the
joule, or 107 ergs.

A practical unit of energy is the calorie,® or 4.1858 J. Historically, the
calorie was introduced for the measurement of heat flux before the
relationship of heat and work was clear, and the prejudice toward the use
of the calorie for heat and of the joule for work still persists. Nevertheless,
the calorie and the joule are simply alternative units of energy, either of
which is acceptable whether the energy flux is work, heat, or some
combination of both.

Other common units of energy are the British thermal unit (Btu), the
liter—atmosphere, the foot-pound and the watt—hour. Conversion factors
among energy units are given inside the back cover of this book.

Example 1

A particular gas is enclosed in a cylinder with a moveable piston. It is observed
that if the walls are adiabatic, a quasi-static increase in volume results in a
decrease in pressure according to the equation

P3® = constant  (for Q = 0)

a) Find the quasi-static work done on the system and the net heat transfer to the
system in each of the three processes (ADB, ACB, and the direct linear process
AB) as shown in the figure.
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In the process ADB the gas is heated at constant pressure (P = 10° Pa) until
its volume increases from its initial value of 1073 m? to its final value of 8 x 1073
m’. The gas is then cooled at constant volume until its pressure decreases to
10%/32 Pa. The other processes (ACB and AB) can be similarly interpreted,
according to the figure.

*Nutritionists refer to a kilocalorie as a *“Calone” —presumably to spare calorie counters the
trauma of large numbers To compound the confusion the initial caprtal C is often dropped, so that a
kilocalorie becomes a *calorie™t
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b) A small paddle is installed inside the system and is driven by an external
motor (by means of a magnetic coupling through the cylinder wall). The motor
exerts a torque, driving,the paddle at an angular velocity w, and the pressure of
the gas (at constant volume) is observed to increase at a rate given by

X torque

[N
~
W

«
%

Show that the energy difference of any two states of equal volumes can be
determined by this process. In particular, evaluate U- — U, and U, — U.
Explain why this process can proceed only in one direction (vertically upward
rather than downward in the P- I plot).
¢) Show that any two states (any two ponts in the P- 1 plane) can be connected
by a combination of the processes in (a) and (b). In particular, evaluate U, — U,.
d) Calculate the work W, mn the process A — D. Calculate the heat transfer
Q,p- Repeat for D - B, and for C — A. Are these results consistent with those
of (a)?

The reader should attempt to solve this problem before reading the
following solution!

Solution
a) Given the equation of the “adiabat™ (for which Q = 0 and AU = W), we find

V 5/3
Up— U, = W= —fVV"PdV= —P,,fVV"(—V’i) av

3 }
— EPAVA5/3(VB 2/3 _ VA 2/3)

3
= 5(25-100) = -1125

Now consider process ADB:

Wipp = —deV= -103 X(8 X 1073 — 10*3)= —700 1

But
Ug = Ug=Wipp+ Qups
Qupp= —1125 4+ 700 = 5875
Note that we are able to calculate Q 5, bttt not Q ,,, and Q pp, separately, for we
do not (yet) know U, — U,.

Similarly we find W, , = —21.9 J and Q5 = —90.6 J. Also W, ; = — 360.9
Jand Q,, = 2484 J.

b) As the motor exerts a torque, and turns through an angle d6, it delivers an
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energy? dU = torque X d6 to the system. But d6 = w dt, so that

21
dP = '5 ? (torque) wdt
21
=3y
or
dU = 2vap
2

This process is carried out at constant ¥ and furthermore dU > 0 (and conse-
quently dP 2 0). The condition dU = 0 follows from dU = torque X d6, for the
sign of the rotation d@ is the same as the sign of the torque that induces that
rotation. In particular

U~ U= —%V(PA ~-P)= % x 1073 x(105 - % X 105) =14531]
and
Up— Uy = —;—V(PD—P,,)= % ><8><10‘3><(105— 515 ><105)= 1162517

¢) To connect any two points in the plane we draw an adiabat through one and
an isochor (¥ = constant) through the other. These two curves intersect, thereby
connecting the two states. Thus we have found (using the adiabatic process) that
Up — Uy = —112.5 J and (using the irreversible stirrer process) that U, — Uy =
1162.5 J. Therefore U, — U, = 1050 J. Equivalently, if we assign the value zero
to U, then

U=0, Ug=-1125J, U.=—1453), U, =1050]

and similarly every state can be assigned a value of U.
d) Now having U, — U, and W, , we can calculate Q , ..
Up—Usy=Wipp+ Qup
1050 = —700 + Q,p
Qup = 17501
Also
Upg— Up=Wps + Opy
or
—1162.5= 0 + Q,,

To check, we note that Q,, + Qpp = 587.5 J, which is equal to Q ,,,5 as found
in (a).

“Note that the energy output of the motor is delivered to the system as energy that cannot be
classified either as work or as heat—it is a non-quast-static transfer of energy.
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PROBLEMS

1.8-1. For the system considered in Example 1, calculate the energy of the state
with P =5 X 10* Paand V =8 X 1073 m’.

1.8-2. Calculate the heat transferred to the system considered in Example 1 in the
process in which it is taken in a straight line (on the P—V diagram) from the state
A to the state referred to in the preceding problem.

1.8-3. For a particular gaseous system it has been determined that the energy is
given by

U= 2.5PV + constant

The system is initially in the state P = 0.2 MPa (mega-Pascals), ¥ = 0.01 m?,
designated as point 4 in the figure. The system is taken through the cycle of three
processes (4 — B, B — C, and C — A) shown in the figure. Calculate Q and W
for each of the three processes. Calculate Q and W for a process from 4 to B
along the parabola P = 10° + 10° X (¥ — .02)%

05 G
04}—
F 03
E3
& 02— B
A
o1
0 l | l
] 001 002 003

V(m3) —>

Answer:
Wee =T X 103 J; Opgc= —95x% 103 )

1.8-4. For the system of Problem 1.8-3 find the equation of the adiabats in the
P-V plane (i.e., find the form of the curves P = P(V') such that dQ = 0 along
the curves).

Answer:
VP’ = constant
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1.8-5. The energy of a particular system, of one mole, is given by
U= APV

where A is a positive constant of dimensions [P]™!. Find the equation of the
adiabats in the P-V plane.

1.8-6. For a particular system it is found that if the volume is kept constant at the
value ¥, and the pressure is changed from P, to an arbitrary pressure P’, the heat
transfer to the system is

Q' =4(P-R) (4>0)
In addition it is known that the adiabats of the system are of the form
PV = constant (y a positive constant)

Find the energy U(P,V) for an arbitrary point in the P-V plane, expressing
U(P,V)in terms of Py, Vy, A, Uy = U(Py, V;) and v (as well as P and V).

Answer:
U-U,=APr—-P)+[PV/(y-D)1-r"""H where r = V/V,

1.8-7. Two moles of a particular single-component system are found to have a
dependence of intemal energy U on pressure and volume given by

U=APV?  (for N =2)

Note that doubling the system doubles the volume, energy, and mole number, but
leaves the pressure unaltered. Write the complete dependence of U on P, V, and
N for arbitrary mole number.

1-9 THE BASIC PROBLEM OF THERMODYNAMICS

The preliminaries thus completed, we are prepared to formulate first the
seminal problem of thermodynamics and then its solution.

Surveying those preliminaries retrospectively, it is remarkable how far
reaching and how potent have been the consequences of the mere choice
of thermodynamic coordinates. Identifying the criteria for those coordi-
nates revealed the role of measurement. The distinction between the
macroscopic coordinates and the incoherent atomic coordinates suggested
the distinction between work and heat. The completeness of the descrip-
tion by the thermodynamic coordinates defined equilibrium states. The
thermodynamic coordinates will now provide the framework for the
solution of the central problem of thermodynamics.

There is, in fact, one central problem that defines the core of thermody-
na]mic theory. All the ults of thermodynamics propagate from its
solution.
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The single, all-encompassing problem of thermodynamics is the determina-
tion of the equilibrium state that eventually results after the removal of
internal constraints in a closed, composite system.

Let us suppose that two simple systems are contained within a closed
cylinder, separated from each other by an internal piston. Assume that the
cylinder walls and the piston are rigid, impermeable to matter, and
adiabatic and that the position of the piston is firmly fixed. Each of the
systems is closed. If we now free the piston, it will, in general, seek some
new position. Similarly, if the adiabatic coating is stripped from the fixed
piston, so that heat can flow between the two systems, there will be a
redistribution of energy between the two systems. Again, if holes are
punched in the piston, there will be a redistribution of matter (and also of
energy) between the two systems. The removal of a constraint in each case
results in the onset of some spontaneous process, and when the systems
finally settle into new equilibrium states they do so with new values of the
parameters UM, VO, N® ... and UPD, VO N® ...  The basic prob-
lem of thermodynamics is the calculation of the equilibrium values of
these parameters.

FIGURE12

Before formulating the postulate that provides the means of solution of
the problem, we rephrase the problem in a slightly more general form
without reference to such special devices as cylinders and pistons. Given
two or more simple systems, they may be considered as constituting a
single composite system. The composite system is termed closed if it is
surrounded by a wall that is restrictive with respect to the total energy, the
total volume, and the total mole numbers of each component of the
composite system. The individual simple systems within a closed com-
posite system need not themselves be closed. Thus, in the particular
example referred to, the composite system is closed even if the internal
piston is free to move or has holes in it. Constraints that prevent the flow
of energy, volume, or matter among the simple systems constituting the
composite system are known as infernal constraints. If a closed composite
system is in equilibrium with respect to internal constraints, and if some
of these constraints are then removed, certain previously disallowed
processes become permissible. These processes bring the system to a new
equilibrium state. Prediction of the new equilibrium state is the central
problem of thermodynamics.
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1.10 THE ENTROPY MAXIMUM POSTULATES

The induction from experimental observation of the central principle
that provides the solution of the basic problem is subtle indeed. The
historical method, culminating in the analysis of Caratheodory, is a tour
de force of delicate and formal logic. The statistical mechanical approach
pioneered by Josiah Willard Gibbs required a masterful stroke of induc-
tive inspiration. The symmetry-based foundations to be developed in
Chapter 21 will provide retrospective understanding and interpretation,
but they are not yet formulated as a deductive basis. We therefore merely
formulate the solution to the basic problem of thermodynamics in a set of
postulates depending upon a posteriori rather than a priori justification.
These postulates are, in fact, the most natural guess that we might make,
providing the simplest conceivable formal solution to the basic problem. On
this basis alone the problem might have been solved; the tentative
postulation of the simplest formal solution of a problem is a conventional
and frequently successful mode of procedure in theoretical physics.

What then is the simplest criterion that reasonably can be imagined for
the determination of the final equilibrium state? From our experience with
many physical theories we might expect that the most economical form
for the equilibrium criterion would be in terms of an extremum principle.
That is, we might anticipate the values of the extensive parameters in the
final equilibrium state to be simply those that maximize® some function.
And, straining our optimism to the limit, we might hope that this
hypothetical function would have several particularly simple mathematical
properties, designed to guarantee simplicity of the derived theory. We
develop this proposed solution in a series of postulates.

Postulate II. There exists a function (called the entropy S) of the extensive
parameters of any composite system, defined for all equilibrium states and
having the following property: The values assumed by the extensive parame-
ters in the absence of an internal constraint are those that maximize the
entropy over the manifold of constrained equilibrium states.

It must be stressed that we postulate the existence of the entropy only
for equilibrium states and that our postulate makes no reference
whatsoever to nonequilibrium states. In the absence of a constraint the
system is free to select any one of a number of states, each of which might
also be realized in the presence of a suitable constraint. The entropy of each
of these constrained equilibrium states is definite, and the entropy is
largest in some particular state of the set. In the absence of the constraint
this state of maximum entropy is selected by the system.

3Or minimize the function, this being purcly a matter of convention in the choice of the sign of the
function, having no consequence whatever in the logical structure of the theory.
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In the case of two systems separated by a diathermal wall we might
wish to predict the manner in which the total energy U distributes
between the two systems. We then consider the composite system with the
internal diathermal wall replaced by an adiabatic wall and with particular
values of U™ and U™ (consistent, of course, with the restriction that
UMD + U@ = U). For each such constrained equilibrium state there is an
entropy of the composite system, and for some particular values of U
and U® this entropy is maximum. These, then, are the values of U® and
U® that obtain in the presence of the diathermal wall, or in the absence
of the adiabatic constraint.

All problems in thermodynamics are derivative from the basic problem
formulated in Section 1.9. The basic problem can be completely solved
with the aid of the extremum principle if the entropy of the system is
known as a function of the extensive parameters. The relation that gives
the entropy as a function of the extensive parameters is known as a
fundamental relation. It therefore follows that if the fundamental relation of
a particular system is known all conceivable thermodynamic information
about the system is ascertainable from it.

The importance of the foregoing statement cannot be overemphasized.
The information contained in a fundamental relation is all-inclusive—it 1s
equivalent to all conceivable numerical data, to all charts, and to all
imaginable types of descriptions of thermodynamic properties. If the
fundamental relation of a system is known, every thermodynamic attri-
bute is completely and precisely determined.

Postulate III. The entropy of a composite system is additive over the
constituent subsystems. The entropy is continuous and differentiable and is a
monotonically increasing function of the energy.

Several mathematical consequences follow immediately. The additivity
property states that the entropy S of the composite system is merely the
sum of the entropies S® of the constituent subsystems:

NED I (1.4)

The entropy of each subsystem is a function of the extensive parameters
of that subsystem alone

S = Sy p N N@) (1.5)

The additivity property applied to spatially separate subsystems re-
quires the following property: The entropy of a simple system is a homoge-
neous first-order function of the extensive parameters. That is, if all the
extensive parameters of a system are multiplied by a constant A, the
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entropy is multiplied by this same constant. Or, omitting the superscript

(),
S(AU,AV,ANy,...,AN,) = AS(U,V, N,,...,N.) (1.6)

The monotonic property postulated implies that the partial derivative
(9S/9U)y . n is a positive quantity,

(as

%)V,N,, ,N,>0 (17)

As the theory develops in subsequent sections, we shall see that the
reciprocal of this partial derivative is taken as the definition of the
temperature. Thus the temperature is postulated to be nonnegative.®

The continuity, differentiability, and monotonic property imply that the
entropy function can be inverted with respect to the energy and that the
energy is a single-valued, continuous, and differentiable function of
S,V, Ny, ..., N,. The function

S=S(U,V,N,...,N) (1.8)
can be solved uniquely for U in the form
U= U(S,V,N,...,N,) (1.9)

Equations 1.8 and 1.9 are alternative forms of the fundamental relation,
and each contains all thermodynamic information about the system.

We note that the extensivity of the entropy permits us to scale the
properties of a system of N moles from the properties of a system of 1
mole. The fundamental equation is subject to the identity

S(U,V,N,N,,...,N))=NS(U/N,V/N,N,/N,...,N/N) (1.10)

in which we have taken the scale factor A of equation 1.6 to be equal to
1/N = 1/%, N,. For a single-component simple system, in particular,

S(U,v,N)=NS(U/N,V/N,1) (1.11)
But U/N is the energy per mole, which we denote by w.
u=U/N (1.12)

$The possibility of negative values of this derivative (i.e., of negative temperatures) has been
discussed by N F Ramsey, Phys. Rev. 103, 20 (1956) Such states are not equilibrium states in real
systems, and they do not invalidate equation 1 7 They can be produced only 1n certain very unique
systems (specifically in isolated spin systems) and they spontaneously decay away Nevertheless the
study of these states is of stahstical mechanical interest, elucidating the stanstical mechanical concept
of temperature
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Also, V/N is the volume per mole, which we denote by v.
v=V/N (1.13)

Thus S(U/N,V/N,1) = S(u,v,1) is the entropy of a system of a single
mole, to be denoted by s(u, v).

s{u,v) = S(u,v,1) (1.14)
Equation 1.11 now becomes
S(U,V,N) = Ns(u,v) (1.15)
Postulate 1V. The entropy of any system vanishes in the state for which
(oU/dS)v.n, n=0 (that is, at the zero of temperature)

We shall see later that the vanishing of the derivative (dU/dS), . »,
is equivalent to the vanishing of the temperature, as indicated. Hence the
fourth postulate is that zero temperature implies zero entropy.

It should be noted that an immediate implication of postulate IV is that
S (like V and N, but unlike U) has a uniquely defined zero.

This postulate is an extension, due to Planck, of the so-called Nernst
postulate or third law of thermodynanucs. Historically, it was the latest of
the postulates to be developed, being inconsistent with classical statistical
mechanics and requiring the prior establishment of quantum statistics in
order that it could be properly appreciated. The bulk of thermodynamics
does not require this postulate, and 1 make no further reference to it until
Chapter 10. Nevertheless, I have chosen to present the postulate at this
point to close the postulatory basis.

The foregoing postulates are the logical bases of our development of
thermodynamics. In the light of these postulates, then, it may be wise to
reiterate briefly the method of solution of the standard type of thermody-
namic problem, as formulated in Section 1.9. We are given a composite
system and we assume the fundamental equation of each of the con-
stituent systems to be known in principle. These fundamental equations
determine the individual entropies of the subsystems when these systems
are in equilibrium. If the total composite system is in a constrained
equilibrium state, with particular values of the extensive parameters of
each constituent system, the total entropy is obtained by addition of the
individual entropies. This total entropy is known as a function of the
various extensive parameters of the subsystems. By straightforward differ-
entiation we compute the extrema of the total entropy function, and then,
on the basis of the sign of the second derivative, we classify these extrema
as minima, maxima, or as horizontal inflections. In an appropriate physi-
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cal terminology we first find the equilibrium states and we then classify
them on the basis of stability. It should be noted that in the adoption of
this conventional terminology we augment our previous definition of
equilibrium; that which was previously termed equilibrium is now termed
stable equilibrium, whereas unstable equilibrium states are newly defined in
terms of extrema other than maxima.

It is perhaps appropriate at this point to acknowledge that although all
applications of thermodynamics are equivalent in principle to the proce-
dure outlined, there are several alternative procedures that frequently
prove more convenient. These alternate procedures are developed in
subsequent chapters. Thus we shall see that under appropriate conditions
the energy U(S,V, N,,...) may be minimized rather than the entropy
S(U,V, N,,...), maximized. That these two procedures determine the
same final state is analogous to the fact that a circle may be characterized
either as the closed curve of minimum perimeter for a given area or as the
closed curve of maximum area for a given perimeter. In later chapters we
shall encounter several new functions, the minimization of which is
logically equivalent to the minimization of the energy or to the maximiza-
tion of the entropy.

The inversion of the fundamental equation and the alternative state-
ment of the basic extremum principle in terms of a minimum of the
energy (rather than a maximum of the entropy) suggests another view-
point from which the extremum postulate perhaps may appear plausible.
In the theories of electricity and mechanics, ignoring thermal effects, the
energy 1s a function of various mechanical parameters, and the condition
of equilibrium is that the energy shall be a minimum. Thus a cone is stable
lying on its side rather than standing on its point because the first position
is of lower energy. If thermal effects are to be included the energy ceases
to be a function simply of the mechanical parameters. According to the
inverted fundamental equation, however, the energy is a function of the
mechanical parameters and of one additional parameter (the entropy). By
the introduction of this additional parameter the form of the energy-
munimum principle is extended to the domain of thermal effects as well as
to pure mechanical phenomena. In this manner we obtain a sort of
correspondence principle between thermodynamics and mechanics—
ensuring that the thermodynamic equilibrium principle reduces to the me-
chanical equilibrium principle when thermal effects can be neglected.

We shall see that the mathematical condition that a maximum of
S(U,V, Ny, ...) implies a minimum of U(S,V, Ny,...) is that the deriva-
tive (dS/dU), »,  be positive. The motivation for the introduction of
this statement in postulate III may be understood in terms of our desire to
ensure that the entropy-maximum principle will go over into an energy-
minimum principle on inversion of the fundamental equation.

In Parts II and II1 the concept of the entropy will be more deeply
explored, both in terms of its symmetry roots and in terms of its statistical
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mechanical interpretation. Pursuing those inquires now would take us too
far afield. In the classical spirit of thermodynamics we temporarily defer
such interpretations while exploring the far-reaching consequences of our
simple postulates.

PROBLEMS

1.10-1. The following ten equations are purported to be fundamental equations
of various thermodynamic systems. However, five are inconsistent with one or
more of postulates II, III, and IV and consequently are not physically acceptable.
In each case qualitatively sketch the fundamental relationship between S and U
(with N and V constant). Find the five equations that are not physically
permissible and indicate the postulates violated by each.

The quantities vy, #, and R are positive constants, and in all cases in which
fractional exponents appear only the real positive root is to be taken.

R2 1/3
a) S =(ET)) (NVU)'3
0
R\ NU\
ns=() (F)
1/2
1/2 2
0 5=(5) v+ 2]
Vo
2
d) S =(¥)V3/NU
Vo
R 1/5
e) s=(u 02) [N?VURP/s
(1]
f) S = NRIn(UV/N?Rlu,)
R 1/2
9 S=(7) WUrexp-v2and
_(R\ 172 U
h) s—(g) (NU) exp(— NRovo)

iy v =(U;f0)% exp(S/NR)

RO s
M U=(~;0—)NV(1 + g ) exp(~S/NR)

1.10-2. For each of the five physically acceptable fundamental equations in
problem 1.10-1 find U as a function of S, ¥, and N.
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1.10-3. The fundamental equation of system A is

R\ .
5= (Z) oy
and similarly for system B. The two systems are separated by a rigid, imperme-
able, adiabatic wall. System A has a volume of 9 X 10”¢ m® and a mole number
of 3 moles. System B has a volume of 4 X 10 ¢ m® and a mole number of 2
moles. The total energy of the composite system is 80 J. Plot the entropy as a
function of U,/(U, + Uy). If the internal wall is now made diathermal and the
system is allowed to come to equilibrium, what are the internal energies of each of
the individual systems? (As in Problem 1.10-1, the quantities v,, #, and R are
positive constants.)






THE CONDITIONS
OF EQUILIBRIUM

2-1 INTENSIVE PARAMETERS

By virtue of our interest in processes, and in the associated changes of
the extensive parameters, we anticipate that we shall be concerned with
the differential form of the fundamental equation. Writing the fundamen-
tal equation in the form

U= U(S,V,N,N,,...,N) (2.1)
we compute the first differential:

aUu au " aU
v = (‘ES:)V,N, ..... N,dS +(W)S.Nl, ...N,dV+ }: (3N')s,v,. NdN’

j=1 J N,

(2.2)

The various partial derivatives appearing in the foregoing equation recur
so frequently that it is convenient to introduce special symbols for them.
They are called intensive parameters, and the following notation is conven-
tional:

au _
(7’}?) vn T, the temperature (2.3)
au
{2 = 4
( 3V)s N P, the pressure (2.4)
U _ . the electrochemical potential of (2.5)
N, sv. N =4y the jth component ’

35
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With this notation, equation 2.2 becomes
dU=TdS — PdV + pdN, + --- +pu,dN, (2.6)

The formal definition of the temperature soon will be shown to agree
with our intuitive qualitative concept, based on the physiological sensa-
tions of “hot” and “cold.” We certainly would be reluctant to adopt a
definition of the temperature that would contradict such strongly en-
trenched although qualitative notions. For the moment, however, we
merely introduce the concept of temperature by the formal definition
(2.3).

Similarly, we shall soon corroborate that the pressure defined by
equation 2.4 agrees in every respect with the pressure defined in mecha-
nics. With respect to the several electrochemical potentials, we have no
prior definitions or concepts and we are free to adopt the definition
(equation 2.5) forthwitH.

For brevity, the electrochemical potential is often referred to simply
as tlhe chemical potential, and we shall use these two terms interchangea-
bly'.

The term — PdV in equation 2.6 is identified as the quasi-static work
dWw,,, as given by equation 1.1.

In the special case of constant mole numbers equation 2.6 can then be
written as

TdS =dU—dW,, if dN,=dN,=dN, =0 2.7

Recalling the definition of the quasi-static heat, or comparing equation 2.7
with equation 1.2, we now recognize TdS as the quasi-static heat flux.

dQ = TdS (2.8)

A quasi-static flux of heat into a system is associated with an increase of
entropy of that system.

The remaining terms in equation 2.6 represent an increase of internal
energy associated with the addition of matter to a system. This type of
energy flux, although intuitively meaningful, is not frequently discussed
outside thermodynamics and does not have a familiar distinctive name.
We shall call ¥ u dN, the quasi-static chemical work.

dW,= ¥ u,dN, (29)

=1

THowever it should be noted that occasionally, and particularly in the theory of solids, the
“chemical potential” is defined as the electrochemical potential p miry  %e molar electrostatic
energy.
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Therefore

dU = dQ + dW,, + dW, (2.10)

Each of the terms 7dS,— PdV, p, de, in equation 2.6 has the dimen-
sions of energy. The matter of units will be considered in Section 2.6. We
can observe here, however, that having not yet specified the units (nor
even the dimensions) of entropy, the units and dimensions of temperature
remain similarly undetermined. The units of p are the same as those of
energy (as the mole numbers are dimensionless). The units of pressure are
familiar, and conversion factors are listed inside the back cover of this
book.

2.2 EQUATIONS OF STATE

The temperature, pressure, and electrochemical potentials are partial
derivatives of functions of S,V,N,,...,N, and consequently are also
functions of §,V, M,,..., N,. We thus have a set of functional relation-
ships

T=T1(S,V,N,...,N) (2.11)
P=P(S,V,N,...,N,) (2.12)
p;=n,(S,V,Ny,...,N) (2.13)

Such relationships, expressing intensive parameters in terms of the inde-
pendent extensive parameters, are called equations of state.

Knowledge of a single equation of state does not constitute complete
knowledge of the thermodynamic properties of a system. We shall see,
subsequently, that knowledge of all the equations of state of a system is
equivalent to knowledge of the fundamental equation and consequently is
thermodynamically complete.

The fact that the fundamental equation must be homogeneous first
order has direct implications for the functional form of the equations of
state. It follows immediately that the equations of state are homogeneous
zero order. That is, multiplication of each of the independent extensive
Parameters by a scalar A leaves the function unchanged.

T(AS,AV, X |,...,AN,)=T(S,V,N,,...,N.) (2.14)
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It therefore follows that the temperature of a portion of a system is
equal to the temperature of the whole system. This is certainly in agree-
ment with the intuitive concept of temperature. The pressure and the
electrochemical potentials also have the property (2.14), and together with
the temperature are said to be intensive.

To summarize the foregoing considerations it is convenient to adopt a
condensed notation. We denote the extensive parameters ¥V, N,,..., N, by
the symbols Xj, X,,..., X,, so that the fundamental relation takes the
form

U= U(S, X, X,,..., X) (2.15)

The intensive parameters are denoted by

U o
(§§)X,.X2, =T=T(5,X,X,,.... X,) (2.16)
U B .

X =P =P(S,X,X,,.... %) j=12,..,t (217)

I8, X, .

whence
4
dU = TdS + ZledXJ (2.18)
=

It should be noted that a negative sign appears in equation 2.4, but does
not appear in equation 2.17. The formalism of thermodynamics is uniform
if the negative pressure, — P, is considered as an intensive parameter
analogous to T and p, p,,.... Correspondingly one of the general
intensive parameters P, of equation 2.17 is — P.

For single-component simple systems the energy differential is fre-
quently written in terms of molar quantities. Analogous to equations 1.11
through 1.15, the fundamental equation per mole is

u=u(s,v) (2.19)
where
s=S/N, v=V/N (2.20)

and

u(s,v) == U(S,V,N) (2.21)

1
N
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Taking an infinitesimal variation of equation 2.19

du du

du = a5 ds + N dv (2.22)
However
Ju Ju U
(E)f(%)y,,v-(ﬁ)y.”” (223)
and similarly
Ju
(%)s—- —P (2.24)
Thus
du=Tds — Pdv (2.25)
PROBLEMS

2.2-1. Find the three equations of state for a system with the fundamental
equation
vf\ S3
()5
Corroborate that the equations of state are homogeneous zero order (i.e., that T,
P, and p are intensive parameters).
2.2-2. For the system of problem 2.2-1 find p as a function of 7, V, and N.

2.2-3. Show by a diagram (drawn to arbitrary scale) the dependence of pressure
on volume for fixed temperature for the system of problem 2.2-1. Draw two such
“isotherms,” corresponding to two values of the temperature, and indicate which
isotherm corresponds to the higher temperature.

22-4. Find the three equations of state for a system with the fundamental

equation
_(8\2_[RE) ,

and show that, for this system, u = —u.
2.2-5. Express p as a function of T'and P for the system of problem 2.2-4.

2.2-6. Find the three equations of state for a system with the fundamental
equation

_(vf)\s? . r
u—(R)ve
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2.2-7. A particular system obeys the relation
u=Av 2erﬁcpts/R)

N moles of this substance, initially at temperature 7, and pressure F,, are
expanded isentropically (s = constant) until the pressure is halved. What is the
final temperature?

Answer:
T/ = 0.63 T,

2.2-8. Show that, in analogy with equation 2.25, for a system with r components

r 1
du=Tds— Pdvo+ ) (n, — n,)dx,
J=1
where the x, are the mole fractions (= N,/N).

2.2-9. Show that if a single-component system is such that PV* is constant in an
adiabatic process (k is a positive constant) the energy is

U= k—_l_—1PV+ Nf(PVA/Nk)
where f is an arbitrary function.

Hint: PV* must be a function of S, so that (JU/3V )¢ = g(S) - V' *, where g(S)
is an unspecified function.

2-3 ENTROPIC INTENSIVE PARAMETERS

If, instead of considering the fundamental equation in the form U =
U(S,..., X,,...) with U as dependent, we had considered S as depen-
dent, we could have carried out all the foregoing formalism in an inverted

but equivalent fashion. Adopting the notation X, for U. we write
S=5(X,, X,..., X)) (2.26)
We take an infinitesimal variation to obtain

AN
ds = k};ﬂ ax, dx, (2.27)
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The quantities dS/dX, are denoted by F,.

as

Fe=3x,

(2.28)

By carefully noting which variables are kept constant in the various partial
derivatives (and by using the calculus of partial derivatives as reviewed in
Appendix A) the reader can demonstrate that

.
F,=—2 (k=1,2.3,...) (2.29)

ko = T

1
T’

These equations also follow from solving equation 2.18 for dS and
comparing with equation 2.27.

Despite the close relationship between the F, and the P, there is a very
important difference in principle. Namely, the P, are obtained by dif-
ferentiating a function of S,..., X,,... and are considered as functions
of these variables, whereas the F, are obtained by differentiating a
function of U,..., X,... and are considered as functions of these latter
variables. That is, in one case the entropy i1s a member of the set of
independent parameters, and in the second case the energy is such a
member. In performing formal manipulations in thermodynamics it is
extremely important to make a definite commitment to one or the other of
these choices and to adhere rigorously to that choice. A great deal of
confusion results from a vacillation between these two alternatives within
a single problem.

If the entropy is considered dependent and the energy independent, as
in §=S(,...,X,...), we shall refer to the analysis as being in the
entropy representation. If the energy is dependent and the entropy is
independent, as in U = U(S,..., X,,...). we shall refer to the analysis as
being in the energy representation.

The formal development of thermodynamics can be carried out in either
the energy or entropy representations alone, but for the solution of a
particular problem either one or the other representation may prove to be
by far the more convenient. Accordingly, we shall develop the two
representations in parallel, although a discussion presented in one repre-
sentation generally requires only a brief outline in the alternate represen-
tation.

The relation § = S(X,,..., X,...) is said to be the entropic fundamen-
tal relation, the set of variables X vo-rr X,,... 1s called the entropic
extensive parameters, and the set of variables Fy,..., F,,... is called the
entropic intensive parameters. Similarly, the relation U = U(S, X|
s-+-» X,,...) is said to be the energetic fundamental relation; the set of
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variables S, X|,..., X is called the energetic extensive parameters,

and the set of variablé:s. .T, Py,..., P,... is called the energetic intensive
parameters.
PROBLEMS

2.3-1. Find the three equations of state in the entropy representation for a system
with the fundamental equation

( o/ ) %
u =

R32 | p172
Answer
-2/5
Log(dee) e
T 5 R3/2 u3/5

~25
r__2 vy*0 BNV
T 5\ R32

2.3-2. Show by a diagram (drawn to arbitrary scale) the dependence of tempera
ture on volume for fixed pressure for the system of problem 2.3-1. Draw two such
“isobars” corresponding to two values of the pressure, and indicate which isobar
corresponds to the higher pressure.

2.3-3. Find the three equations of state in the entropy representation for a system
with the fundamental equation

6
u= (E)sle"’l/"é

2.3-4. Consider the fundamental equation

S=AU"V"N’
where A is a positive constant. Evaluate the permissible values of the three
constants n, m, and r if the fundamental equation is to satisfy the thermody-
namic postulates and if. in addition, we wish to have P increase with U/F, at
constant N. (This latter condition is an intuitive substitute for stability require-

ments to be studied in Chapter 8.) For definiteness, the zero of energy is to be
taken as the energy of the zero-temperature state.

2.3-5. Find the three equations of state for a system with the fundamental
relation
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a) Show that the equations of state in entropy representation are homogeneous
gzero-order functions.

p) Show that the temperature is intrinsically positive.
¢) Find the “mechanical equation of state” P = P(T,v).

d) Find the form of the adiabats in the P-v plane. (An “adiabat” is a locus of
constant entropy, or an “isentrope”).

2-4 THERMAL EQUILIBRIUM-—TEMPERATURE

We are now in a position to illustrate several interesting implications of
the extremum principle which has been postulated for the entropy.
Consider a closed composite system consisting of two simple systems
separated by a wall that is rigid and impermeable to matter but that does
allow the flow of heat. The volumes and mole numbers of each of the
simple systems are fixed, but the energies U and U'? are free to change,
subject to the conservation restriction

UM + U® = constant (2.30)

imposed by the closure of the composite system as a whole. Assuming that
the system has come to equilibrium, we seek the values of UV and U®,
According to the fundamental postulate, the values of U™ and U® are
such as to maximize the entropy. Therefore, by the usual mathematical
condition for an extremum, it follows that in the equilibrium state a
virtual infinitesimal transfer of energy from system 1 to system 2 will
produce no change in the entropy of the whole system. That is,

ds =0 (2.31)
The additivity of the entropy for the two subsystems gives the relation
S = S‘”(U‘”,V‘”,...,NI‘”,...) + S‘z’(U(z’, V(”,...,N]‘Z’,..,).
(2.32)

As UM and U@ are changed by the virtual energy transfer, the entropy
change is

s @
au®

)
ds — ( aS

»_ dU® +
U | pm, AN,

) dUu®  (2.33)
yva M(Z)_
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or, employing the definition of the temperature

1
_ ) 2
as = Y auvu’’ + e du® (2.34)

By the conservation condition (equation 2.30), we have

du® = —4du® (2.35)
whence
as =L - 1) o (2.36)
T 7O ’

The condition of equilibrium (equation 2.31) demands that 4S vanish for
arbitrary values of dU", whence

1 1

T @ (2.37)
This is the condition of equilibrium. If the fundamental equations of each
of the subsystems were known, then 1/T™ would be a known function of
U® (and of VM and N, ..., which, however, are merely constants).
Similarly, 1/T® would be a known function of U@, and the equation
1/TV =1/T™® would be one equation in UM and U'®. The conserva-
tion condition UV + U® = constant provides a second equation, and
these two equations completely determine, in principle, the values of U
and of U®. To proceed further and actually to obtain the values of U
and U® would require knowledge of the explicit forms of the fundamen-
tal equations of the systems. In thermodynamic theory, however, we
accept the existence of the fundamental equations, but we do not assume
explicit forms for them, and we therefore do not obtain explicit answers.
In practical applications of thermodynamics the fundamental equations
may be known, either by empirical observations (in terms of measure-
ments to be described later) or on the basis of statistical mechantcal
calculations based on simple models. In this way applied thermodynamics
is able to lead to explicit numerical answers.

Equation 2.37 could also be written as 7 = T, We write it in the
form 1/TY = 1/T® to stress the fact that the analysis is couched in the
entropy representation. By writing 1/7TY, we indicate a function of
U v® | whereas TV would imply a function of S, ¥ The
Pphysical significance of equation 2.37, however, remains the equality of the
temperatures of the two subsystems.

A second phase of the problem is the investigation of the stability of the
predicted final state. In the solution given we have not exploited fully the
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pasic postulate that the entropy 1s a maximum in equilibrium; rather, we
merely have investigated the consequences of the fact that it is an
extremum. The condition that it be a maximum requires, in addition to
the condition dS = 0, that

d’s <0 (2.38)

The consequences of this condition lead to considerations of stability, to
which we shall give explicit attention in Chapter 8.

2-5 AGREEMENT WITH
INTUITIVE CONCEPT OF TEMPERATURE

In the foregoing example we have seen that if two systems are separated
by a diathermal wall, heat will flow until each of the system attains the
same temperature. This prediction i1s in agreement with our intuitive
notion of temperature, and it is the first of several observations that
corroborate the plausibility of the formal definition of the temperature.

Inquiring 1nto the example in slightly more detail, we suppose that the
two subsystems imtially are separated by an adiabatic wall and that the
temperatures of the two subsystems are almost, but not quite, equal. In
particular we assume that

TH > 7O (2.39)

The system is considered initially to be in equilibrium with respect to the
internal adiabatic constraint. If the internal adiabatic constraint now is
removed, the system is no longer in equilibrium, heat flows across the
wall, and the entropy of the composite system increases. Finally the
system comes to a new equilibrium state, determined by the condition that
the final values of T and T are equal, and with the maximum possible
value of the entropy that is consistent with the remaining constraints.
Compare the initial and the final states. If AS denotes the entropy
difference between the final and initial states

AS >0 (2.40)
But, as in equation 2.36,
{1 1 .
AS = (F” - }E) AU (2.41)

where TM and T® are the initial values of the temperatures. By the
P
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condition that T® > T@_ it follows that
AUWY < 0 (2.42)

This means that the spontaneous process that occurred was one in which
heat flowed from subsystem 1 to subsystem 2. We conclude therefore that
heat tends to flow from a system with a high value of T to a system with a
low value of T. This is again in agreement with the intuitive notion of
temperature. It should be noted that these conclusions do not depend on
the assumption that T® is approximately equal to 7®@; this assumption
was made merely for the purpose of obtaining mathematical simplicity in
equation 2.41, which otherwise would require a formulation in terms of
integrals.

If we now take stock of our intuitive notion of temperature, based on
the physiological sensations of hot and cold, we realize that it is based
upon two essential properties. First, we expect temperature to be an
intensive parameter, having the same value in a part of a system as it has
in the entire system. Second, we expect that heat should tend to flow from
regions of high temperature toward regions of low temperature. These
properties imply that thermal equilibrium is associated with equality and
homogeneity of the temperature. Our formal definition of the temperature
possesses each of these properties.

2-6 TEMPERATURE UNITS

The physical dimensions of temperature are those of energy divided by
those of entropy. But we have not yet committed ourselves on the
dimensions of entropy; in fact its dimensions can be selected quite
arbitrarily. If the entropy is multiplied by any positive dimensional
constant we obtain a new function of different dimensions but with
exactly the same extremum properties—and therefore equally acceptable
as the entropy. We summarily resolve the arbitrariness simply by adopting
the convention that the entropy is dimensionless (from the more incisive
viewpoint of statistical mechanics this is a physically reasonable choice).
Consequently the dimensions of temperature are identical to those of
energy. However, just as torque and work have the same dimensions, but
are different types of quantities and are measured in different units (the
meter—Newton and the joule, respectively), so the temperature and the
energy should be carefully distinguished. The dimensions of both energy
and temperature are [mass - (length)?/(time)?]. The units of energy are

Joules, ergs, calories, and the like. The units of temperature remain to be
discussed.

In our later discussion of thermodynamic “Carnot” engines, in Chapter
4, we shall find that the optimum performance of an engine in contact
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with two thermodynamic systems is completely determined by the ratio of
the temperatures of those two systems. That is, the principles of thermody-
namics provide an experimental procedure that unambiguously determines
the ratio of the temperatures of any two given systems.

The fact that the ratio of temperatures is measurable has immediate
consequences. First the zero of temperature is uniquely determined and
cannot be arbitrarily assigned or “shifted.” Second we are free to assign
the value of unity (or some other value) to one arbitrary chosen state. All
other temperatures are thereby determined.

Equivalently, the single arbitrary aspect of the temperature scale is the
size of the temperature unit, determined by assigning a specific tempera-
ture to some particular state of a standard system.

The assignment of different temperature values to standard states leads
to different thermodynamic temperature scales, but all thermodynamic
temperature scales coincide at T = 0. Furthermore, according to equation
1.7 no system can have a temperature lower than zero. Needless to say,
this essential positivity of the temperature is in full agreement with all
measurements of thermodynamic temperatures.

The Kelvin scale of temperature, which is the official Systéme Interna-
tional (SI) system, is defined by assigning the number 273.16 to the
temperature of a mixture of pure ice, water, and water vapor in mutual
equilibrium; a state which we show in our later discussion of “triple
points” determines a unique temperature. The corresponding unit of
temperature is called a kelvin, designated by the notation K.

The ratio of the kelvin and the joule, two units with the same dimen-
sions, is 1.3806 X 10~ joules /kelvin. This ratio is known as Boltzmann’s
constant and is generally designated as k. Thus kT is an energy.

The Rankine scale is obtained by assigning the temperature (2) X
273.16 = 491.688°R to the ice—water—water vapor system just referred to.
The unit, denoted by °R, is called the degree Rankine. Rankine tempera-
tures are merely 2 times the corresponding Kelvin temperature.

Closely related to the “absolute” Kelvin scale of temperature is the
International Kelvin scale, which is a “practical” scale, defined in terms of
the properties of particular systems in various temperature ranges and
contrived to coincide as closely as possible with the (absolute) Kelvin
scale. The practical advantage of the International Kelvin scale is that it
provides reproducible laboratory standards for temperature measurement
throughout the temperature range. However, from the thermodynamic
point of view, it is not a true temperature scale, and to the extent that it
deviates from the absolute Kelvin scale it will not yield temperature ratios
that are consistent with those demanded by the thermodynamic for-
malism.

The values of the temperature of everyday experiences are large num-
bers on both the Kelvin and the Rankine scales. Room temperatures are
in the region of 300 K, or 540°R. For common usage, therefore, two
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derivative scales are in common use. The Celsius scale is defined as
T(°C) = T (K) — 273.15 (2.43)

where T(°C) denotes the “Celsius temperature,” for which the unit is
called the degree Celsius, denoted by °C. The zero of this scale is
displaced relative to the true zero of temperature, so the Celsius tempera-
ture scale is not a thermodynamic temperature scale at all. Negative temper-
atures appear, the zero is incorrect, and ratios of temperatures are not in
agreement with thermodynamic principles. Only temperature differences
are correctly given.

On the Celsius scale the “temperature” of the triple point (ice, water,
and water vapor in mutual equilibrium) is 0.01°C. The Celsius tempera-
ture of an equilibrium mixture of ice and water, maintained at a pressure
of 1 atm, is even closer to 0°C, with the difference appearing only in the
third decimal place. Also the Celsius temperature of boiling water at 1
atm pressure is very nearly 100°C. These near equalities reveal the
historical origin? of the Celsius scale; before it was recognized that the
zero of temperature is unique it was thought that two points, rather than
one, could be arbitrarily assigned and these were taken (by Anders
Celsius, in 1742) as the 0°C and 100°C just described.

The Fahrenheit scale is a similar “practical” scale. It is now defined by

T(°F) = T(°R) — 459.67 = 2T(°C) +32 (2.44)

The Fahrenheit temperature of ice and water at 1 atm pressure is roughly
32°F; the temperature of boiling water at 1 atm pressure is about 212°F;
and room temperatures are in the vicinity of 70°F. More suggestive of the
presumptive origins of this scale are the facts that ice, salt, and water
coexist in equilibrium at 1 atm pressure at a temperature in the vicinity of
OOF; and that the body (i.e., rectal) temperature of a cow is roughly
100°F.

Although we have defined the temperature formally in terms of a partial
derivative of the fundamental relation, we briefly note the conventional
method of introduction of the temperature concept, as developed by
Kelvin and Caratheodory. The heat flux dQ is first defined very much as
we have introduced it in connection with the energy conservation princi-
ple. From the consideration of certain cyclic processes it is then inferred
that there exists an integrating, factor (1/T) such that the product of this

in;legxc'fating factor with the imperfect differential dQ is a perfect differen-
tial (d4S).

1
ds = —dQ (2.45)
T
2A very short but fascinating review of the history of temperature scales is é by E. R. Jones, Jr..

The Physics Teacher 18, 594 (1980).
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The temperature and the entropy thereby are introduced by analysis of
the existence of integrating factors in particular types of differential
equations called Pfaffian forms.

PROBLEMS

2.6-1. The temperature of a system composed of ice, water, and water vapor in
mutual equilibrium has a temperature of exactly 273.16 K, by definition. The
temperature of a system of ice and water at 1 atm of pressure is then measured as
273.15 K, with the third and later decimal places uncertain. The temperature of a
system of water and water vapor (i.e., boiling water) at 1 atm is measured as
373.15 K + 0.01 K. Compute the temperature of water—water vapor at 1 atm,
with its probable error, on the Celsius, absolute Fahrenheit, and Fahrenheit
scales.

2.6-2. The “gas constant” R is defined as the product of Avogadro’s number
(N, = 6.0225 X 102 /mole) and Boltzmann’s constant R = N,k . Correspond-
ingly R = 8.314 J/mole K. Since the size of the Celsius degree is the same as the
size of Kelvin degree, 1t has the value 8.314 J/mole®C. Express R in units of
J/mole°F.

2.6-3. Two particular systems have the following equations of state:

m
1 _3,N®
TW 2 U(l)
and
1 5 N@
7@ 20O

where R is the gas constant (Problem 2.6-2). The mole number of the first system
is N = 2 and that of the second is N® = 3. The two systems are separated by a
diathermal wall, and the total energy in the composite system is 2.5 X 103 J.
What is the internal energy of each system in equilibrium?

Answer:
UM =714.31]

2.6-4. Two systems with the equations of state given in Problem 2.6-3 are
separated by a diathermal wall. The respective mole numbers are N = 2 and
N® = 3 The initial temperatures are T® = 250 K and 7@ = 350 K. What are
the values of UM and U™ after equilibrium has been established? What is the
equilibrium temperature?

2-7 MECHANICAL EQUILIBRIUM

A second application of extremum principle for the entropy yields
an even simpler result and ulerefore is useful in making the procedure
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clear. We consider a closed composite system consisting of two simple
systems separated by a movable diathermal wall that is impervious to the
flow of matter. The values of the mole numbers are fixed and constant.
but the values of UM and U® can change, subject only to the closure
condition

U® + UP = constant (2.46)

and the values of ¥ and V' can change, subject only to the closure
condition

V® + VD = constant (2.47)

The extremum principle requires that no change in entropy result from
infinitesimal virtual processes consisting of transfer of heat across the wall
or of displacement of the wall.

Then
das =0 (2.48)
where
1
as = 98 du® + HL(I) avw
UM [yo o, VO Jyw, N
as@ as@
dU@ 48 .
( AUD ) Ve @, v +( FI4% ) UB NP, g (2.49)
By the closure conditions
dU® = —qu® (2.50)
and
dv®d = —dv® (2.51)
whence
1 1 pm P
= o) LI IR M —
ds ( s T‘Z))dU +( porty T(2’) dv 0 (2.52)

As this expression must vanish for arbitrary and independent values of
dU® and dV®, we must have

1 1
}(T) - }727 =0 (2.53)
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and
—— = —= (2.54)

Although these two equations are the equilibrium conditions in the proper
form appropriate to the entropy representation, we note that they imply
the physical conditions of equality of both temperature and pressure.

TO=T7® (2.55)
PO =p® (2.56)

The equality of the temperatures is just our previous result for equi-
librium with a diathermal wall. The equality of the pressures is the new
feature mtroduced by the fact that the wall is movable. Of course, the
equality of the pressures is precisely the result that we would expect on the
basis of mechanics, and this result corroborates the identification of
the function P as the mechanical pressure.

Again we stress that this result is a formal solution of the given
problem. In the entropy representation, 1/T is a function of UM, V'™,
and N® (an entropic equation of state), so that equation 2.53 is formally
a relationship among U®, ¥®, U@, and V® (with N® and N each
held fixed). Similarly P®/T® is a function of UM, VD and NV, so
that equation 2.54 is a second relationship among U™, v®, U®, and
V@_The two conservation equations 2.46 and 2.47 complete the four equa-
tions required to determine the four sought-for variables. Again thermo-
dynamics provides the methodology, which becomes explicit when applied
to a concrete system with a definite fundamental relation, or with known
equations of state.

The case of a moveable adiabatic (rather than diathermal) wall presents
a unique problem with subtleties that are best discussed after the for-
malism is developed more fully; we shall return to that case in Problem
2.7-3 and in Problem 5.1-2.

Example 1

Three cylinders of identical cross-sectional areas are fitted with pistons, and each
contains a gaseous system (not necessarily of the same composition). The pistons
are connected to a rigid bar hinged on a fixed fulcrum, as indicated in Fig. 2.1.
The “moment arms,” or the distances from the fulcrum, are in the ratio of
1:2:3. The cylinders rest on a heat conductive table of negligible mass; the table
makes no contribution to the physics of the problem except to ensure that the
three cylinders are in diathermal contact. The entire system is isolated and no
pressure acts on the external surfaces of the pistons. Find the ratio of pressures
and of temperatures in the three cylinders.
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FIGURE 2.1
Three volume-coupled systems (Example 2.7-1).

Solution
The closure condition for the tota) energy is
UM+ 8UD +8UP =0
and the coupling of the pistons imposes the conditions that
VA =28vM
and
V=38
Then the extremal property of the entropy is

65 = L sum + Ao sy 6U<3>+——5V<1>
T“) 7O TG W

Eliminating U®, ¥, and V(”

1 1 1 1
[ I S [¢}) P 2
88 ( W T(3)) 8U +( T T(3)) 8y

PO P(2) P®

ot Te 0 Te
The remaining three variations §U™), U@, and 8V'") are arbitrary and uncon-
strained, so that the coefficient of each must vanish separately. From the coeffi-
cient of UM we find T® = TV, and from the coefficient of §U® we find
T®™ = TO, Hence all three systems come to a common final temperature. From
the coefficient of V™), and using the equality of the temperatures, we find

PO 4 2p@=3p3
This is the expected result, embodying the familiar mechanical principle of the

lever. Explicit knowledge of the equations of state would §  le us to convert this
into a solution for the volumes of the three systems.
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PROBLEMS

2.7-1. Three cylinders are fitted with four pistons, as shown in Fig. 2.2. The
cross-sectional areas of the cylinders are in the ratio 4;: A,: A3 = 1:2: 3. Pairs
of pistons are coupled so that their displacements (linear motions) are equal. The
walls of the cylinders are diathermal and are connected by a heat conducting bar
(crosshatched in the figure). The entire system is isolated (so that, for instance,
there is no pressure exerted on the outer surfaces of the pistons). Find the ratios
of pressures in the three cylinders.

~
~
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FIGURE 22
Three volume-coupled systems. (Problem 2.7-1)

2.7-2. Two particular systems have the following equations of state:

1 3 NO pm NOD

o 2Rpw To - fye
and

1 5 N@ P® N@

T® 27 per T® R @

The mole number of the first system is N = 0.5 and that of the second is
N® = 0,75. The two systems are contained in a closed cylinder, separated by a
fixed, adiabatic, and impermeable piston. The initial temperatures are T = 200
K and 7@ = 300 K, and the total volume is 20 liters. The “setscrew” which
prevents the motion of the piston is then removed, and simultaneously the
adiabatic insulation of the piston is stripped off, so that the piston becomes
moveable, diathermal, and impermeable. What is the energy, volume, pressure,
and temperature of each subsystem when equilibrium is established?
It is sufficient to take R = 8.3 J/mole K and to assume the external pressure to
be zero.
Answer:
U®=17001]

2.7-3. The hypothetical problem of equilibrium in a closed composite system with
an internal moveable adiabatic wall is a unique indeterminate problem. Physi-
C.ally, release of the piston would lead it to perpetual oscillation in the absence of
Viscous damping. With viscoy,  1mping the piston would eventually come to rest
8t such a position that the pressures on either side would be equal, but the
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temperatures 1n each subsystem would then depend on the relative viscosity in
each subsystem. The solution of this problem depends on dynamical considera-
tions. Show that the application of the entropy maximum formalism is corre-
spondingly indeterminate with respect to the temperatures (but determinate with
respect to the pressures).

Hinr: First show that with dUW = — PO P M and similarly for subsystem 2,
energy conservation gives P = P®_ Then show that the entropy maximum
condition vanishes identically, giving no solution for T® or 7.

2-8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW

Consideration of the flow of matter provides insight into the nature of
the chemical potential. We consider the equilibrium state of two simple
systems connected by a rigid and diathermal wall, permeable to one type
of material (N,) and impermeable to all others (N,, N;,..., N,). We seek
the equilibrium values of U and U® and of N® and N/?. The virtual
change in entropy in the appropriate virtual process is

M
1w P

ds = T Tm

N0 L gpo P e (s
Ut e ~ e dNO (257)

and the closure conditions demand
dU®P = —qu® (2.58)
and

dAN® = —dN® (2.59)

whence

ds = 11 dU® — _il)__ﬁg dND (2.60
T TO® TO @ 60)

As dS must vanish for arbitrary values of both dUV and dN®, we find
as the conditions of equilibrium

= ——— (2.61)
and

pd P
76 @ (hence also p{® = u() (2.62)
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Thus, just as the temperature can be looked upon as a sort of “potential”
for heat flux and the pressure can be looked upon as a sort of “potential”
for volume changes, so the chemical potential can be looked upon as a
sort of “potential” for matter flux. A difference in chemical potential
provides a “generalized force” for matter flow.

The direction of the matter flow can be analyzed by the same method
used in Section 2.5 to analyze the direction of the heat flow. If we assume
that the temperatures TV and T® are equal, equation 2.60 becomes

(N
_ M TP'1 AN (2.63)

das
If pY is greater than p®, dN{P will be negative, since dS must be
positive. Thus matter tends to flow from regions of high chemical poten-
tial to regions of low chemical potential.

In later chapters we shall see that the chemical potential provides the
generalized force not only for the flow of matter from point to point but
also for its changes of phase and for chemical reactions. The chemical
potential thus plays a dominant role in theoretical chemistry.

The units of chemical potential are joules per mole (or any desired
energy unit per mole).

PROBLEMS

2.8-1. The fundamental equation of a particular type of two-component system is

U3/2V Iv1 N2
S=NA+ NRIHW - NlRan - N2Rln—ﬁ

N=N, + N,

where A is an unspecified constant. A closed rigid cylinder of total volume 10
liters is divided into two chambers of equal volume by a diathermal rigid
membrane, permeable to the first component but impermeable to the second. In
one chamber is placed a sample of the system with original parameters N = 0.5,
NV = 0.75, V® = 5 liters, and T™® = 300 K. In the second chamber is placed a
sample with original parameters N® = 1, N = 0.5, V@ = 5 liters, and T =
250 K. After equilibrium is established, what are the values of NV, N@ T, P®,
and P®?

Answer:
T=2727K

2.8-2. A two-component gaseous system has a fundamental equation of the form

BN,N,
N

S = AUVVIANYS 4 , N=N+N,
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where 4 and B are positive constants. A closed cylinder of total volume 2V} is
separated into two equal subvolumes by a rigid diathermal partition permeable
only to the first component. One mole of the first component, at a temperature
7,, is introduced in the left-hand subvolume, and a mixture of 3 mole of each
component, at a temperature 7,, is introduced into the right-hand subvolume.

Find the equilibrium temperature 7, and the mole numbers in each subvolume
when the system has come to equilibrium, assuming that 7, = 27, =400 K and
that 37B?=100A%V,. Neglect the heat capacity of the walls of the container!

Answer:

N, = 0.9

29 CHEMICAL EQUILIBRIUM

Systems that can undergo chemical reactions bear a strong formal
similarity to the diffusional systems considered in the preceding section.
Again they are governed by equilibrium conditions expressed in terms of
the chemical potential p—whence derives its name chemical potential.

In a chemical reaction the mole numbers of the system change, some
increasing at the expense of a decrease in others. The relationships among
the changing mole numbers are governed by chemical reaction equations
such as

2H, + O, = 2H,0 (2.64)
or

20 = 0, (2.65)

The meaning of the first of these equations is that the changes in the mole
numbers of hydrogen, oxygen, and water stand in the ratio of
—2:—1: +2. More generally one writes a chemical reaction equation,
for a system with r components, in the form

0=Yr4, (2.66)
J

The v, are the “stoichiometric coefficients” (—2, —1, +2 for the reaction
of hydrogen and oxygen to form water), and the A, are the symbols for
the chemical components (4, = H,, 4, = O,, and A, = H,0 for the
preceding reaction). If the reaction is viewed in the reverse sense (for
instance, as the dissociation of water to hydrogen plus oxygen) the
opposite signs would be assigned to each of the v,; this is a matter of
arbitrary choice and only the relative signs of the », are significant.
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The fundamental equation of the system is
S=S(UV,N,N,,...,N.) (2.67)

In the course of the chemical reaction both the total energy U and the
total volume V remain fixed, the system being considered to be enclosed
in an adiabatic and rigid “reaction vessel.” This is not the most common
boundary condition for chemical reactions, which are more often carried
out in open vessels, free to interchange energy and volume with the
ambient atmosphere; we shall return to these open boundary conditions in
Section 6.4.
The change in entropy in a virtual chemical process is then
rop
as = - Y, 7’ dN, (2.68)
j=1

However, the changes in the mole numbers are proportional to the

stoichiometric coefficients »,. Let the factor of proportionality be denoted
by dN, so that

~1|2,

Z (2.69)
Then the extremum principle dictates that, in equilibrium

e

(2.70)

If the equations of state of the mixture are known, the equilibrium
condition (2.70) permits explicit solution for the final mole numbers.

It is of interest to examine this “solution in principle” in a slightly
richer case. If hydrogen, oxygen, and carbon dioxide are introduced into a
vessel the following chemical reactions may occur.

H, + 10, = H,0
CO, + H, = CO + H,0 (2.71)
CO + 30, = CO,
In equilibrium we then have
Py, t %Hoz = Pu,0
Bco, ¥ P, = Bco t Bh,0 (2.72)

1 —
Bco t 2lo, = Ko,
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These constitute two independent equations, for the first equation is
simply the sum of the two following equations (just as the first chemical
reaction is the net result of the two succeeding reactions). The amounts of
hydrogen, oxygen, and carbon introduced into the system (in whatever
chemical combinations) specify three additional constraints. There are
thus five constraints, and there are precisely five mole numbers to be
found (the quantities of H,, O,, H,0, CO,, and CO). The problem is
thereby solved in principle.

As we observed earlier, chemical reactions more typically occur in open
vessels with only the final pressure and temperature determined. The
number of variables is then increased by two (the energy and the volume)
but the specification of T and P provides two additional constraints.
Again the problem is determinate.

We shall return to a more thorough discussion of chemical reactions in
Section 6.4. For now it is sufficient to stress that the chemical potential
plays a role in matter transfer or chemical reactions fully analogous to the
role of temperature in heat transfer or pressure in volume transfer.

PROBLEMS

2.9-1. The hydrogenation of propane (C;H;) to form methane (CH,) proceeds
by the reaction
C;H; + 2H, = 3CH,

Find the relationship among the chemical potentials and show that both the
problem and the solution are formally identical to Example 1 on mechanical
equilibrium.



L
SOME FORMAL RELATIONSHIPS,
AND SAMPLE SYSTEMS

3-1 THE EULER EQUATION

Having seen how the fundamental postulates lead to a solution of the
equilibrium problem, we now pause to examine in somewhat greater detail
the mathematical properties of fundamental equations.

The homogeneous first-order property of the fundamental relation
permits that equation to be written in a particularly convenient form,
called the Euler form.

From the definition of the homogeneous first-order property we have,
for any A

UAS,AX,,...,AX,) = AU(S, X,,..., X,) (3.1)
Diiferentiating with respect to A

U(...,AX,,...) a(AS) aU(...,\X,,...) d(AX))

+
JAS) A ix) A
+ -0 = U(S, X,y-.0, X)) (3.2)
or
U(...,\X,,...) LooU(.., N, ..)
S+ X
d(\S) El d(AX)) /
= U(S, X,,..., X)) (3.3)

This equation is true for any A and in particular for A = 1, in which case
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it takes the form

U L QU
55 ):l—a—ng+~--—u (3.4)
-
!
U=TS+ Y PX (3.5)
J=1

For a simple system in particular we have
U=TS - PV + p,N, + -+ +u N, (3.6)

The relation 3.5 or 3.6 is the particularization to thermodynamics of the
Euler theorem on homogeneous first-order forms. The foregoing develop-
ment merely reproduces the standard mathematical derivation. We refer
to equation 3.5 or 3.6 as the Euler relation.

In the entropy representation the Euler relation takes the form

S=3Y FX (3.7)
J=0
or
_(1 P\,_y H_k)
S—(T)U+(T)V k);l(T N, (3.8)
PROBLEMS

3.1-1. Write each of the five physically acceptable fundamental equations of
Problem 1.10-1 in the Euler form.

3-2 THE GIBBS-DUHEM RELATION

In Chapter 2 we arrived at equilibrium criteria involving the tempera-
ture, pressure, and chemical potentials. Each of the intensive parameters
entered the theory in a similar way, and the formalism is, in fact,
symmetric in the several intensive parameters. Despite this symmetry,
however, the reader is apt to feel an intuitive response to the concepts of
temperature and pressure, which is lacking, at least to some degree, in the
case of the chemical potential. It is of interest, then, to note that the
intensive parameters are not all independent. There is a relation among
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the intensive parameters, and for a single-component system p is a
function of 7 and P.

The existence of a relationship among the various intensive parameters
is a consequence of the homogeneous first-order property of the funda-
mental relation. For a single-component system this property permits the
fundamental relation to be written in the form u = u(s, v), as in equation
2.19; each of the three intensive parameters is then also a function of s
and v. Elimination of s and v from among the three equations of state
yields a relation among T, P, and p.

The argument can easily be extended to the more general case, and it
again consists of a straightforward counting of variables. Suppose we have
a fundamental equation in (¢ + 1) extensive variables

U=U(S, X, Xp---5 X,) (3.9

yielding, in turn, ¢ + 1 equations of state
P,=P(S, X,X,,.... X)) (3.10)
If we choose the parameter A of equation 2.14 as A = 1/X,, we then have
P=P(S/X,, X,/ X,s-... X,_1/X,,1) (3.11)

Thus each of the (¢+ + 1) intensive parameters is a function of just ¢
variables. Elimination of these ¢ variables among the (¢ + 1) equations
yields the desired relation among the intensive parameters.

To find the explicit functional relationship that exists among the set of
intensive parameters would require knowledge of the explicit fundamental
equation of the system. That is, the analytic form of the relationship varies
from system to system. Given the fundamental relation, the procedure is
evident and follows the sequence of steps indicated by equations 3.9
through 3.11.

A differential form of the relation among the intensive parameters can
be obtained directly from the Euler relation and is known as the
Gibbs-Duhem relation. Taking the infinitesimal variation of equation 3.5,
we find

t t
dU=TdS + SdT+ ) P dX,+ } X dP, (3.12)
=1 7=1

But, in accordance with equation 2.6, we certainly know that

!
dU=TdS + ) P dX, (3.13)

J=1
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whence, by subtraction we find the Gibbs- Duhem relation

t
S$dT+ ) X dP, =0 (3.14)

=1
For a single-component simple system, in particular, we have

S$dT — VdP + Ndp =0 (3.15)
or
dp= —sdT + vdP (3.16)

The variation in chemical potential 1s not independent of the variations in
temperature and pressure, but the variation of any one can be computed
in terms of the vanations of the other two.

The Gibbs—-Duhem relation presents the relationship among the inten-
sive parameters in differential form. Integration of this equation yields the
relation in explicit form, and this is a procedure alternative to that
presented in equations 3.9 through 3.11. In order to integrate the
Gibbs--Duhem relation, one must know the equations of state that enable
one to write the X’s in terms of the P’s, or vice versa.

The number of intensive parameters capable of independent variation is
called the number of thermodynamic degrees of freedom of a given system.
A simple system of r components has r + 1 thermodynamic degrees of
freedom.

In the entropy representation the Gibbs-Duhem relation again states
that the sum of products of the extensive parameters and the differentials
of the corresponding intensive parameters vanishes.

> X, dF, =0 (3.17)
1=0
or
1 Py_y Pl _
Ud( T) + Vd( T) kngkd( £) =0 (3.18)
PROBLEMS

3.2-1. Find the relation among 7, P, and p for the system with the fundamental

equation
U= ( vlg\ s4
R} [ NV?
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3-3 SUMMARY OF FORMAL STRUCTURE

Let us now summarize the structure of the thermodynamic formalism in
the energy representation. For the sake of clarity, and in order to be
explicit, we consider a single-component simple system. The fundamental
equation

U= U(S,V,N) (3.19)
contains all thermodynamic information about a system. With the defini-

tions T = dU/3S, and so forth, the fundamental equation implies three
equations of state

T=T(S,V,N)=T(s,v) (3.20)
P=P(S.V,N)=P(s,v) (3.21)
p=p(S,V,N)=p(s,v) (3.22)

If all three equations of state are known, they may be substituted into the
Euler relation, thereby recovering the fundamental’' equation. Thus the
totality of all three equations of state is equivalent to the fundamental
equation and contains all thermodynamic information about a system.
Any single equation of state contains less thermodynamic information
than the fundamental equation.

If two equations of state are known, the Gibbs—-Duhem relation can be
integrated to obtain the third. The equation of state so obtained will
contain an undetermined integration constant. Thus two equations of
state are sufficient to determine the fundamental equation, except for an
undetermined constant.

A logically equivalent but more direct and generally more convenient
method of obtaining the fundamental equation when two equations of
state are given is by direct integration of the molar relation

du=Tds — Pdv (3.23)

Clearly, knowledge of T'= 7(s,v) and P = P(s,v) yields a differential
equation in the three vanables u, s, and v, and integration gives

u=u(s,v) (3.24)

which is a fundamental equation. Again, of course, we have an unde-
termined constant of integration.

It is always possible to express the internal energy as a function of
parameters other than S, V, and N. Thus we could eliminate $ from
U=U(S,V,N)and T = T(S,V, N) to obtain an equation of the form
U= U(T,V, N). However, I stress that such an equation is not a funda-
mental relation and does not contain all possible thermodynamic informa-
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(@

FIGURE 3.1

tion about the system. In fact, recalling the definition of 7 as dU/dS, we
see that U = U(T,V, N) actually is a partial differential equation. Even if
this equation were integrable, it would yield a fundamental equation with
undetermined functions. Thus knowledge of the relation U = U(S,V, N)
allows one to compute the relation U = U(T,V, N), but knowledge of
U= U(T,V,N) does not permit one inversely to compute U =
U(S,V, N). Associated with every equation there is both a truth value and
an informational content. Each of the equations U = U(S,V, N) and
U= U(T,V,N) may be true, but only the former has the optimum
informational content.

These statements are graphically evident if we focus, for instance, on
the dependence of U on § at constant J and N. Let that dependence be
as shown in the solid curve in Fig. 3.1(a). This curve uniquely determines
the dependence of U on T, shown in Fig. 3.1(b); for each point on the
U(S) curve there is a definite U and a definite slope 7 = dU/dS,
determining a point on the U(T) curve. Suppose, however, that we are
given the U(T) curve (an equation of state) and we seek to recover the
fundamental U(S) curve. Each of the dotted curves in Fig. 3.1(a) is
equally compatible with the given U(T') curve, for all have the same slope
T at a given U. The curves differ by an arbitrary displacement, corre-
sponding to the arbitrary “constant of integration” in the solution of the
differential equation U = U(JU/dS). Thus, Fig. 3.1(a) implies Fig. 3.1(b),
but the reverse is not true. Equivalently stated, only U= U(S) is a
fundamental relation. The formal structure is illustrated by consideration

of several specific and explicit systems in the following Sections of this
book.

Example
A particular system obeys the equations



Problems 0o

and

T2 _ AU3/2
2

where A is a positive constant. Find the fundamental equation.

Solution

Writing the two equations in the form of equations of state in the entropy

representation (which is suggested by the appearance of U, ¥V, and N as

independent parameters)
1?=A~1/2u—3/4vl/2
£ = 24" V2yl /4,172

Then the differential form of the molar fundamental equation (the analogue of
equation 3.23) is

1 P
ds = 7 du + T dv

=4" ‘/Z(u‘ 39 2 du + 2uV V2 dy)
= 4A~l/2d(ul/4vl/2)
so that
- -1,2,,1/4,1,2
=44 V2V + 5,

and
S = 44 VUVAYVINYA 4 N5,

The reader should compare this method with the alternative technique of first
integrating the Gibbs-Duhem relation to obtain p(u,v), and then inserting the
three equations of state into the Euler equation.

Particular note should be taken of the manner in which ds is integrated to
obtain 5. The equation for ds in terms of du and dv is a partial differential
equation—it certainly cannor be integrated term by term, nor by any of the
familiar methods for ordinary differential equations in one independent variable.
We have integrated the equation by “inspection”; simply “recognizing” that
u 32 du + 2u'*% V2 dv is the differential of u'/%'/2.

PROBLEMS

3.3-1. A particular system obeys the two equations of state

_ 34s?

14

the thermal equation of state

’
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and

P=—, the mechanical equation of state

where A is constant.
a) Find p as a function of s and v, and then find the fundamental equation.
b) Find the fundamental equation of this system by direct integration of the
molar form of the equation.
3.3-2. It is found that a particular system obeys the relations
U=PV
and
P = BT?
where B is constant. Find the fundamental equation of this system.
3.3-3. A system obeys the equations

po__ NU
NV — 24VU
and
U212 W
= 92C———pAU/N
T 2CN——2AUe

Find the fundamental equation.
Hint: To integrate, let

s = Du"yme= ¥

where D, n, and m are constants to be determined.
3.3-4. A system obeys the two equations u = 2Pv and u'/? = BTv!/*. Find the
fundamental equation of this system.

3-4 THE SIMPLE IDEAL GAS AND
MULTICOMPONENT SIMPLE IDEAL GASES

A “simple ideal gas” is characterized by the two equations
PV = NRT (3.25)

and
U= cNRT (3.26)

where c is a constant and R is the “ universal gas constant” (R = N,k =
8.3144 J /mole K).

Gases composed of noninteracting monatomic atoms (such as He, Ar,
Ne) are observed to satisfy equations 3.25 and 3.26 at temperatures such
that kT is small compared to electronic excitation energies (i.e., 7 < 10*
K), and at low or moderate pressures. All such “monatomic ideal gases”
have a value of ¢ = 3.
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Under somewhat more restrictive conditions of temperature and pres-
sure other real gases may conform to the simple ideal gas equations 3.25
and 3.26, but with other values of the constant ¢. For diatomic molecules
(such as O, or NO) there tends to be a considerable region of temperature
for which ¢ =~ 3 and another region of higher temperature for which ¢ =
(with the boundary between these regions generally occurring at tempera-
tures on the order of 10° K).

Equations 3.25 and 3.26 permit us to determine the fundamental
equation. The explicit appearance of the energy U in one equation of state
(equation 3.26) suggests the entropy representation. Rewriting the equa-
tions in the correspondingly appropriate form

T= cR(—) = — (3.27)

and

=y

(3.28)

From these two entropic equations of state we find the third equation of
State

% = function of u, v (3.29)

by integration of the Gibbs—Duhem relation

d(%) - ud(%) + vd(;) (3.30)

Finally, the three equations of state will be substituted into the Euler
equation

s=(lT)U+(§)V—(%)N (3.31)

Proceeding in this way the Gibbs—Duhem relation (3.30) becomes

d(ﬁ) =u X(—ﬂ)du + v X(-—B)dv = —CR@ — R@
T uz UZ u v
(3.32)
and integrating
B _(F) _ _ u L 3.33
L (%), cRlIn- ~ Rin.. (3.33)

Here u, and v, are the parameters of a fixed reference state, and (p/T),
arises as an undetermined constant of integration. Then, from the Euler
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relation (3.31)

S=Nso+NRln[(g;)c(7Vo)(~%)‘(””] (3.34)
where
s0=(c+1)R-—(—;-)0 (3.35)

Equation 3.34 is the desired fundamental equation; if the integration
constant s, were known equation 3.34 would contain all possible thermo-
dynamic information about a simple ideal gas.

This procedure is neither the sole method, nor even the preferred
method. Alternatively, and more directly, we could integrate the molar
equation

1 P
ds = (7)du +(—T—)dv (3.36)
which, in the present case, becomes
ds=c(5)du+(5)du (3.37)
u v
giving, on integration,
s=s0+cR1n(l)+R1n(—”~) (3.38)
Uy Vo

This equation is equivalent to equation 3.34.

It should, perhaps, be noted that equation 3.37 is integrable term by
term, despite our injunction (in Example 3) that such an approach
generally is not possible. The segregation of the independent variables u
and v in separate terms in equation 3.37 is a fortunate but unusual
simplification which permits term by term integration in this special case.

A mixture of two or more simple ideal gases—a “multicomponent
simple ideal gas”—is characterized by a fundamental equation which is
most simply written in parametric form, with the temperature 7" playing
the role of the parametric variable.

N, v,

J

§ = ENJSJO+(ZNJCJ)Rln—7T: + ZNIRln( v )
J J 0 J

U= (ENJCJ)RT (3.39)
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Elimination of T between these equations gives a single equation of the
standard form S = S(U,V, N, N,,...).

Comparison of the individual terms of equations 3.39 with the expres-
sion for the entropy of a single-component ideal gas leads to the following
interpretation (often referred to as Gibbs’s Theorem). The entropy of a
mixture of ideal gases is the sum of the entropies that each gas would have if
it alone were to occupy the volume V at temperature T. The theorem is, in
fact, true for all ideal gases (Chapter 13).

It is also of interest to note that the first of equations 3.39 can be
written in the form

T 14 N,
S = ?stjo +(%‘,Njcj)Rln T, + NRlnNU0 - R%‘,len ~

(3.40)

and the last term is known as the “entropy of mixing.” It represents the
difference in entropies between that of a mixture of gases and that of a
collection of separate gases each at the same temperature and the same
density as the original mixture N,/V, = N/V, (and hence at the same
pressure as the original mixture); see Problem 3.4-15. The close similarity,
and the important distinction, between Gibbs’s theorem and the interpre-
tation of the entropy of mixing of ideal gases should be noted carefully by
the reader. An application of the entropy of mixing to the problem of
1sotope separation will be given in Section 4.4 (Example 4).

Gibbs’s theorem is demonstrated very neatly by a simple “thought
experiment.” A cylinder (Fig. 3.2) of total volume 2V, is divided into four
chambers (designated as a, 8,v,8) by a fixed wall in the center and by
two sliding walls. The two sliding walls are coupled together so that their
distance apart is always one half the length of the cylinder (V, = V, and
Vp = V). Initially, the two sliding walls are coincident with the left end
and the central fixed partition, respectively, so that V, = V, = 0. The
chamber B, of volume V, is filled with a mixture of N, moles of a simple
ideal gas A and N, moles of a simple ideal gas B. Chamber § is initially
evacuated. The entire system is maintained at temperature 7.

The left-hand sliding wall is permeable to component A, but not to
component B. The fixed partition is permeable to component B, but not
to component A. The right-hand sliding wall is impermeable to either
component.

The coupled sliding walls are then pushed quasi-statically to the right
until Vg = V;=0 and V, = V, = V,. Chamber a then contains pure A4
and chamber y contains pure B. The initial mixture, of volume V,
thereby is separated into two pure components, each of volume V.
According to Gibbs’s theorem the final entropy should be equal to the
initial entropy, and we shall now see directly that this 1s, in fact, true.
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FIGURE 32
Separation of a mixture of ideal gases,
Coupling bar demonstrating Gibbs’s theorem.

We first note that the second of equations 3.39, stating that the energy
is a function of only 7 and the mole number, ensures that the final energy
is equal to the initial energy of the system. Thus — TAS is equal to the
work done in moving the coupled walls.

The condition of equilibrium with respect to transfer of component A
across the left-hand wall is p, , = p, p. It is left to Problem 3.4-14 to
show that the conditions p, , = p, g and ppg g = py  imply that

=P, and Py= 2P,

That is, the total force on the coupled moveable walls (P, — Py + P)
vanishes. Thus no work is done in moving the walls, and consequently no
entropy change accompanies the process. The entropy of the original
mixture of A and B, in a common volume ¥V, is precisely equal to the
entropy of pure A and pure B, each in a separate volume ¥,. This is
Gibbs’s theorem.

Finally, we note that the simple ideal gas considered in this section is a
special case of the general ideal gas, which encompasses a very wide class
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of real gases at low or moderate pressures. The general ideal gas is again
characterized by the mechanical equation of state PV = NRT (equation
3.25), and by an energy that again is a function of the temperature
only—but not simply a linear function. The general ideal gas will be
discussed in detail in Chapter 13, and statistical mechanical derivations of
the fundamental equations will emerge in Chapter 16.

PROBLEMS

Note that Problems 3.4-1, 3.4-2, 34-3, and 3.4-8 refer to “quasi-static
processes”; such processes are to be interpreted not as real processes but merely
as loci of equilibrium states. Thus we can apply thermodynamics to such
quasi-static “processes”; the work done in a quasi-static change of volume (from
V, toV,)is W= — [PdV and the heat transfer is Q = [T'dS. The relationship of
real processes to these idealized “quasi-static processes” will be discussed in
Chapter 4.

34-1. A “constant volume ideal gas thermometer” is constructed as shown
(schematically) in Fig. 3.3. The bulb containing the gas is constructed of a
material with a negligibly small coefficient of thermal expansion. The point A4 is a
reference point marked on the stem of the bulb. The bulb is connected by
a flexible tube to a reservoir of liquid mercury, open to the atmosphere.. The
mercury reservoir is raised or lowered until the mercury miniscus coincides with
the reference point A. The height # of the mercury column is then read.

a) Show that the pressure of the gas is the sum of the external (atmospheric)
pressure plus the height # of the mercury column multiplied by the weight per
unit volume of mercury (as measured at the temperature of interest).

b) Using the equation of state of the ideal gas, explain how the temperature of
the gas is then evaluated.

e —>]

FIGURE 313
Constant-volume ideal gas thermometer.
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¢) Describe a “constant pressure ideal gas thermometer” (in which a changing
volume is directly measured at constant pressure).

3.4-2. Show that the relation between the volume and the pressure of a mon-
atomic ideal gas undergoing a quasi-static adiabatic compression (dQ = TdS = 0.
S = constant) is

Pu/? = (POUSﬂ( 110/3R)92’/3R = constant

Sketch a family of such “adiabats” in a graph of P versus V. Find the
corresponding relation for a simple ideal gas.

3.4-3. Two moles of a monatomic ideal gas are at a temperature of 0°C and a
volume of 45 liters. The gas is expanded adiabaticailly (dQ = 0) and quasi-stati-
cally until its temperature falls to —S0°C. What are its imtial and final pressures
and its final volume?

Answer:

P,=01MPa, V,=61x10 *m’

3.4-4. By carrying out the integral [P dV, compute the work done by the gas in
Problem 3.4-3. Also compute the initial and final energies, and corroborate that
the difference in these energies is the work done.

3.4-5. In a particular engine a gas is compressed in the initial stroke of the piston.
Measurements of the instantaneous temperature, carried out during the compres-
sion, reveal that the temperature increases according to

Vv n

7= (7) %
where T; and V}, are the initial temperature and volume, and 7 is a constant. The
gas is compressed to the volume V, (where V| < ;). Assume the gas to be
monatomic ideal, and assume the process to be quasi-static.
a) Calculate the work W done on the gas.
b) Calculate the change 1n energy AU of the gas.
c) Calculate the heat transfer Q to the gas (through the cylinder walls) by using
the results of (a) and (b).
d) Calculate the heat transfer directly by integrating dQ = TdS.
e) From the result of (c) or (d). for what value of 5 is Q0 = 0? Show that for this
value of 7 the locus traversed coincides with an adiabat (as calculated in Problem
3.4-2).
3.4-6. Find the three equations of state of the “simple ideal gas” (equation 3.34).
Show that these equations of state satisfy the Euler relation.

3.4-7. Find the four equations of state of a two-component mixture of simple

ideal gases (equations 3.39). Show that these equations of state sausfy the Fuler
relation.
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3.4-8. 1f a monatomic ideal gas is permitted to expand into an evacuated region,
thereby increasing its volume from V to AV, and if the walls are rigid and
adiabatic, what is the ratio of the initial and final pressures?” What is the ratio of
the initial and final temperatures? What is the difference of the initial and final
entropies?

3.4-9. A tank has a volume of 0.1 m* and 1s filled with He gas at a pressure of
5 X 10° Pa. A second tank has a volume of 0.15 m’ and is filled with He gas at a
pressure of 6 X 10° Pa. A valve connecting the two tanks is opened. Assuming He
to be a monatomic ideal gas and the walls of the tanks to be adiabatic and rigid,
find the final pressure of the system.

Hint: Note that the internal energy is constant.

Answer.
P/= 5.6 x 10° Pa

3.4-10.

a) If the temperatures within the two tanks of Problem 3.4-9, before opening the
valve, had been T =300 K and 350 K, respectively, what would the final
temperature be?

b) If the first tank had contained He at an initial temperature of 300 K, and the
second had contained a diatomic ideal gas with ¢ = 5/2 and an initial tempera-
ture of 350 K, what would the final temperature be?

Answer:
a) T, =330K
b) T/ = 337K

3.4-11. Show that the pressure of a multicomponent simple ideal gas can be
written as the sum of *partial pressures” P, where P = N, RT/V. These “partal
pressures” are purely formal quantities not subject to experimental observation.
(From the mechanistic viewpoint of kinetic theory the partial pressure P, is the
contribution to the total pressure that results from bombardment of the wall by
molecules of species :-—a distinction that can be made only when the molecules

are noninteracting, as in an ideal gas.)

3.4-12. Show that p , the electrochemical potential of the jth component in a
multicomponent simple ideal gas, satisfies
Ny, .
B, = RTln(-—V—) + (function of T)

and find the explicit form of the *function of 7.”

Show that u, can be expressed in terms of the “partial pressure” (Problem
3.4-11) and the temperature.
3.4-13. An impermeable, diathermal, and rigid partition divides a container into
two subvolumes, each of volume V. The subvolumes contam, respectively, one
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mole of H, and three moles of Ne. The system is maintained at constant
temperature 7. The partition is suddenly made permeable to H,, but not to Ne,
and equilibrium is allowed to reestablish. Find the mole numbers and the
pressures.

3.4-14. Use the results of Problems 3.4-11 and 3.4-12 to establish the results
P, = P, and Pz = 2P, in the demonstration of Gibbs’s theorem at the end of this
section.

3.4-15. An impermeable, diathermal and rigid partition divides a container into
two subvolumes, of volumes n¥;, and mV,. The subvolumes contain, respectively,
n moles of H, and m moles of Ne, each to be considered as a simple ideal gas.
The system is maintained at constant temperature 7. The partition 1s suddenly
ruptured and equilibrium is allowed to re-establish. Find the initial pressure in
each subvolume and the final pressure. Find the change in entropy of the system.
How is this result related to the *“entropy of mixing” (the last term in equation
3.40)?

3-5 THE “IDEAL VAN DER WAALS FLUID”

Real gases seldom satisfy the 1deal gas equation of state except in the
limit of low density. An improvement on the mechanical equation of state
(3.28) was suggested by J. D. van der Waals in 1873.

RT a
P= =

=D (3.41)
Here a and b are two empirical constants characteristic of the particular
gas. In strictly quantitative terms the success of the equation has been
modest, and for detailed practical applications it has been supplanted by
more complicated empirical equations with five or more empirical con-
stants. Nevertheless the van der Waals equation is remarkably successful
in representing the qualitative features of real fluids, including the
gas—liquid phase transition.

The heuristic reasoning that underlies the van der Waals equation is
intuitively plausible and informative, although that reasoning lies outside
the domain of thermodynamics. The ideal gas equation P = RT/v is
known to follow from a model of point molecules moving independently
and colliding with the walls to exert the pressure P. Two simple correc-
tions to this picture are plausible. The first correction recognizes that the
molecules are not point particles, but that each has a nonzero volume
b/N,. Accordingly, the volume V in the ideal gas equation is replaced by
V — Nb; the total volume diminished by the volume Nb occupied by the
molecules themselves.

The second correction arises from the existence of forces between the
molecules. A molecule in the interior of the vessel is acted upon by
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intermolecular forces in all directions, which thereby tend to cancel. But a
molecule approaching the wall of the container experiences a net back-
ward attraction to the remaining molecules, and this force in turn reduces
the effective pressure that the molecule exerts on colliding with the
container wall. This diminution of the pressure should be proportional to
the number of interacting pairs of molecules, or upon the square of the
number of molecules per unit volume (1/v?); hence the second term in
the van der Waals equation.

Statistical mechanics provides a more quantitative and formal deriva-
tion of the van der Waals equation, but 1t also reveals that there are an
infinite series of higher order corrections beyond those given in equation
3.41. The truncation of the higher order terms to give the simple van der
Waals equation results in an equation with appropriate qualitative fea-
tures and with reasonable (but not optimum) quantitative accuracy.

The van der Waals equation must be supplemented with a thermal
equation of state in order to define the system fully. It is instructive not
simply to appeal to experiment, but rather to inquire as to the simplest
possible (and reasonable) thermal equation of state that can be paired
with the van der Waals equation of state. Unfortunately we are not free
stimply to adopt the thermal equation of state of an ideal gas, for
thermodynamic formalism imposes a consistency condition between the
two equations of state. We shall be forced to alter the ideal gas equation
slightly.

We write the van der Waals equation as

= — (3.42)
and the sought for additional equation of state should be of the form

1
7=f(u,v) (3.43)
These two equations would permit us to integrate the molar equation

1 P
ds = 7 du + *7: dv (344)

to obtain the fundamental equation. However, if ds is to be a perfect
differential, it is required that the mixed second-order partial derivatives
should be equal

% 3’

dvou  dudv (3.45)
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or
J 1 Jd (P
3l 7), = 7l7), (3.46)
whence
A1) _2( R _al
dv\T/, dul\v—-b ,2T),
a 3 1 N
a7, (47

This condition can be written as

s 7).~ dm (7). (49

That is, the function 1/T must depend on the two variables 1/v and u/a
in such a way that the two derivatives are equal. One possible way of
accomplishing this is to have 1/7T depend only on the sum (1/v + u/a).
We first recall that for a simple ideal gas 1 /7T = ¢R/u; this suggests that
the simplest possible change consistent with the van der Waals equation is

1 cR
T u+ a/v (3.49)

For purposes of illustration throughout this text we shall refer to the
hypothetical system characterized by the van der Waals equation of state
(3.41) and by equation 3.49 as the “ideal van der Waals fluid.”

We should note that equation 3.41, although referred to as the “ van der
Waals equation of state,” is not in the appropriate form of an equation of
state. However, from equations 3.49 and 3.42 we obtain

P R acR
== - 3.50
T v-b w?+av (3.50)

The two preceding equations are the proper equations of state in the
entropy representation, expressing 1/7 and P/T as functions of u and v.

With the two equations of state we are now able to obtain the
fundamental relation. It is left to the reader to show that

S = NRIn[(v~ b)(u + a/v)‘] + Ns, (3.51)

where s, is a constant. As in the case of the ideal gas the fundamental
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TABLE 3.1
Van der Waals Constants and Molar Heat
Capacities of Common Gases“

Gas a(Pa-m°) b(l10™°m?) c
He 0.00346 23.7 1.5
Ne 0.0215 171 1.5
H, 0.0248 26.6 25
A 0.132 302 1.5
N, 0.136 38.5 2.5
o, 0.138 326 25
Co 0.151 39.9 2.5
co, 0.401 27 3.5
N,O 0.384 442 35
H,O 0.544 30.5 31
Cl, 0.659 56.3 2.8
SO, 0.680 56.4 35

¢ Adapted from Paul S Epsten, Textbook of Thermodynarucs,
Wiley, New York, 1937.

equation does not satisfy the Nernst theorem, and it cannot be valid at
very low temperatures.

We shall see later (in Chapter 9) that the ideal van der Waals fluid is
unstable in certain regions of temperature and pressure, and that it
spontaneously separates into two phases (“liqud” and “gas”). The funda-
mental equation (3.51) is a very rich one for the illustration of thermody-
namic principles.

The van der Waals constants for various real gases are given in Table
3.1. The constants @ and b are obtained by empirical curve fitting to the
van der Waals isotherms in the vicinity of 273 K; they represent more
distant isotherms less satisfactorily. The values of ¢ are based on the
molar heat capacities at room temperatures.

PROBLEMS

3.5-1. Are each of the listed pairs of equations of state compatible (recall
equation 3.46)? If so, find the fundamental equation of the system.
a) u = aPv and Pv* = bT
b) u = aPv? and Pv? = bT

u ¢+ bw u
9 P= v a+ b and T = a+ bu
3.5-2. Find the relationship between the volume and the temperature of an ideal
van der Waals fluid in a quasi-static adiabatic expansion (i.e., in an isentropic
expansion, with dQ = TdS = 0, or S = constant).
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3.5-3. Repeat Problem 3.4-3 for CO,, rather than for a monatomic ideal gas.
Assume CO, can be represented by an ideal van der Waals fluid with constants as
given in Table 3.1.

At what approximate pressure would the term (—a/v?) in the van der Waals
equation of state make a 10% correction to the pressure at room temperature?

Answer:
Vf = 0.091 rﬂ3
3.5-4. Repeat parts (a), (b), and (c) of problem 3.4-5, assuming that n = — 3

and that the gas is an ideal van der Waals fluid.

Show that your results for AU and for W (and hence for Q) reduce to the
results of Problem 3.4-5 (for n = — 3) as the van der Waals constants a and b go
to zero, and ¢ = 3. Recall that In(1 + x) = x, for small x.

3.5-5. Consider a van der Waals gas contained in the apparatus described in
Problem 3.4-1 (i.e., in the “constant volume gas thermometer”).

a) Assuming it to be known in advance that the gas obeys a van der Waals
equation of state, show that knowledge of two reference temperatures enables one
to evaluate the van der Waals constants a and b.

b) Knowing the constants a and b, show that the apparatus can then be used as
a thermometer, to measure any other temperature.

¢) Show that knowledge of three reference temperatures enables one to determine
whether a gas satisfies the van der Waals equation of state, and if it does, enables
one to measure any other temperature.

3.5-6. One mole of a monatomic ideal gas and one mole of Cl, are contained in a
rigid cylinder and are separated by a moveable internal piston. If the gases are at
a temperature of 300 K the piston is observed to be precisely in the center of the
cylinder. Find the pressure of each gas. Treat Cl, as a van der Waals gas (see
Table 3.1).

Answer:
P =35%10" Pa

3-6 ELECTROMAGNETIC RADIATION

If the walls of any “empty” vessel are maintained at a temperature 7 it
is found that the vessel is, in fact, the repository of electromagnetic
energy. The quantum theorist might consider the vessel as containing
photons, the engineer might view the vessel as a resonant cavity support-
ing electromagnetic modes, whereas the classical thermodynamicist might
eschew any such mechanistic models. From any viewpoint, the empir-
ical equations of state of such an electromagnetic cavity are the
“Stefan-Boltzmann Law”

U=bVT* (3.52)
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and

U

P=3

(3.53)

where b is a particular constant (b = 7.56 X 107 '¢ J/m® K*) which will
be evaluated from basic principles in Section 16.8. It will be noted that
these empirical equations of state are functions of U and V, but not of N.
This observation calls our attention to the fact that in the “empty” cavity
there exist no conserved particles to be counted by a parameter N. The
electromagnetic radiation within the cavity is governed by a fundamental
equation of the form S = S(U, V') in which there are only two rather than
three independent extensive parameters!

For electromagnetic radiation the two known equations of state con-
stitute a complete set, which need only be substituted in the truncated
Euler relation

1 P
S—7U+7V (3.54)

to provide a fundamental relation. For this purpose we rewrite equations
3.52 and 3.53 in the appropriate form of entropic equations of state

1
T

|4 1/4
_ pal Y
b ( U) (3.55)

and

= _pl/a
b V

T 3

P 1 (U)-"/“ (3.56)

so that the fundamental relation becomes, on substitution into 3.54

R JE S (3.57)

PROBLEMS

3.6-1. The universe is considered by cosmologists to be an expanding electromag-
netic cavity containing radiation that now is at a temperature of 2.7 K. What will
be the temperature of the radiation when the volume of the universe is twice its
present value? Assume the expansion to be isentropic (this being a nonobvious
prediction of cosmological model calculations).

3-6.2. Assuming the electromagnetic radiation filling the universe to be in equi-
librium at T = 2.7 K, what is the pressure associated with this radiation? Express
the answer both in pascals and in atmospheres.



80 Some Formal Relationships and Sample Systems

3.6-3. The density of matter (primarily hydrogen atoms) in intergalactic space is
such that its contribution to the pressure is of the order of 10 » Pa.

a) What is the approximate density of matter (in atoms/m’) 1n intergalactic
space?

b) What is the ratio of the kinetic energy of matter to the energy of radiation in
intergalactic space? (Recall Problems 3.6-1 and 3.6-2.)

¢) What is the ratio of the total matter energy (i.e., the sum of the kinetic energy
plus the relativistic energy mc?) to the energy of radiation in intergalactic space?

3-7 THE “RUBBER BAND”

A somewhat different utility of the thermodynamic formalism is il-
lustrated by consideration of the physical properties of a rubber band;
thermodynamics constrains and guides the construction of simple phe-
nomenological models for physical systems.

Let us suppose that we are interested in building a descriptive model for
the properties of a rubber band. The rubber band consists of a bundle of
long-chain polymer molecules. The quantities of macroscopic interest are
the length L, the tension 7, the temperature T, and the energy U of the
rubber band. The length plays a role analogous to the volume and the
tension plays a role analogous to the negative pressure (4 ~ — P). An
analogue of the mole number might be associated with the number of
monomer units in the rubber band (but that number is not generally
variable and it can be taken here as constant and suppressed in the
analysis).

A qualitative representation of experimental observations can be sum-
marized in two properties. First, at constant length the tension increases
with the temperature—a rather startling property which is in striking
contrast to the behavior of a stretched metallic wire. Second, the energy is
observed to be essentially independent of the length, at least for lengths
shorter than the “elastic limit” of the rubber band (a length corresponding
to the “unkinking” or straightening of the polymer chains).

The simplest representation of the latter observation would be the
equation

U=cL,T (3.58)
where ¢ is a constant and L, (also constant) is the unstretched length of
the rubber band. The linearity of the length with tension, between the
unstretched length L, and the elastic limit length L,, is represented by
L-1L,

F=pbl——rn,
Ll - L()

Ly<L<L, (3.59)

where b is a constant. The insertion of the factor T in this equation
(rather than T? or some other function of T') is dictated by the thermody-
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namic condition of consistency of the two equations of state. That is, as in
equation 3.46

acl7),=aol-7), (340

which dictates the linear factor 7 in equation (3.59). Then

L._
ds = ~dU—ZﬂrdeU b Ly

T T U *1:_—1‘0 dL (3.61)

and the fundamental equation correspondingly is

S=&+d@m§ b (L - L,)" (3.62)

Uy 2(L, - L)

Although this fundamental equation has been constructed on the basis
only of the most qualitative of information, it does represent empirical
properties reasonably and, most important, consistently. The model 1l-
lustrates the manner in which thermodynamics guides the scientist in
elementary model building.

A somewhat more sophisticated model of polymer elasticity will be
derived by statistical mechanical methods in Chapter 15.

PROBLEMS

3.7-1. For the rubber band model, calculate the fractional change in (L — L)
that results from an increase 87 in temperature, at constant tension. Express the
result 1n terms of the length and the temperature.

3.7-2. A rubber band is stretched by an amount dL, at constant 7. Calculate the
heat transfer dQ to the rubber band. Also calculate the work done. How are these
related and why?

3.7-3. If the energy of the unstretched rubber band were found to increase qua-
dratically with T, so that equation 3.58 were t0 be replaced by U= cL,T", would
equation 3.59 require alteration? Again find the fundamental equation of the
rubber band.

3-8 UNCONSTRAINABLE VARIABLES; MAGNETIC SYSTEMS
In the preceding sections we have seen examples of several specific

systems, emphasizing the great diversity of types of systems to which
thermodynamics apphes and itlustrating the constraints on analytic mod-
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eling of simple systems. In this section ..¢ give an example of a magnetic
system. Here we have an additional purpose, for although the general
structure of thermodynamics is represented by the examples already given,
particular “idiosyncrasies” are associated with certain thermodynamic
parameters. Magnetic systems are particularly prone to such individual
peculiarities, and they well illustrate the special considerations that occa-
sionally are required.

In order to ensure magnetic homogeneity we focus attention on el-
lipsoidal samples in homogeneous external fields, with one symmetry axis
of the sample parallel to the external field. For simplicity we assume no
magnetocrystalline anisotropy, or, if such exists, that the “easy axis™ lies
parallel to the external field. Furthermore we initially consider only
paramagnetic or diamagnetic systems—that is, systems in which the
magnetization vanishes in the absence of an externally imposed magnetic
field. In our eventual consideration of phase transitions we shall include
the transition to the ferromagnetic phase, in which the system develops a
spontaneous magnetization.

As shown in Appendix B, the extensive parameter that characterizes the
magnetic state is the magnetic dipole moment I of the system. The
fundamental equation of the system is of the form U = U(S,V, I, N). In
the more general case of an ellipsoidal sample that is not coaxial with the
external field, the single parameter I would be replaced by the three
cartesian coordinates of the magnetic moment: U(S,V, 1,,1,,1,, N). The
thermodynamic structure of the problem is most convemently illustrated
in the one-parameter case.

The intensive parameter conjugate to the magnetic moment I is B,, the
external magnetic field that would exist in the absence of the system

B =

€

( ad (3.63)

W)S,V,N

The unit of B, is the tesla (T), and the units of I are Joules/Tesla (J/T).

It is necessary to note a subtlety of definition implicit in these identifi-
cations of extensive and intensive parameters (see Appendix B). The
energy U is here construed as the energy of the material system alone; in
addition the “vacuum” occupied by the system must be assigned an
energy 38 B2V (where pg, the permeability of free space, has the value
Ko =47 % 1077 tesla-meters/ampere) Thus the total energy within the
spatlal reglon occupxed by asystemis U + 3118 B2V. Whether the “ vacuum
term” in the energy is associated with the System or is treated separately
(as we do) is a matter of arbitrary choice, but considerable confusion can
arise if different conventions are not carefully distinguished To repeat, the
energy U is the change in energy within a particular region m the field
when the material system is introduced; it excludes the energy 44i¢ B2V of
the region prior to the introduction of the system.
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The Euler relation for a magnetic system is now
U=TS-PV+ B, I+ puN (3.64)
and the Gibbs—Duhem relation is
SdT — VdP + IdB, + Ndp =0 (3.65)

An “idiosyncrasy” of magnetic systems becomes evident if we attempt
to consider problems analogous to those of Sections 2.7 and 2.8 —namely,
the condition of equilibrium of two subsystems following the removal of a
constraint. We soon discover that we do not have the capability of
constraining the magnetic moment; in practice the magnetic moment is
always unconstrained! We can specify and control the magnetic field
applied to a sample (just as we can control the pressure), and we thereby
can bring about a desired value of the magnetic moment. We can even
hold that value of the magnetic moment constant by monitoring its value
and by continually adjusting the magnetic field—again, just as we might
keep the volume of a system constant by a feedback mechanism that
continually adjusts the external pressure. But that is very different from
simply enclosing the system in a restrictive wall. There exist no walls
restrictive with respect to magnetic moment.

Despite the fact that the magnetic moment is an unconstrainable
variable, the over-all structure of thermodynamic theory still applies. The
fundamental equation, the equations of state, the Gibbs-Duhem, and the
Euler relations maintain their mutual relationships. The nonavailability of
walls restrictive to magnetic moment can be viewed as a “mere experi-
mental quirk,” that does not significantly influence the applicability of
thermodynamic theory.

Finally, to anchor the discussion of magnetic systems in an explicit
example, the fundamental equation of a simple paramagnetic model
system is

2
U= NRYE,exp[% + NI"F ] (3.66)
0

where T, and [, are positive constants. This model does not describe any
particular known system-——it is devised to provide a simple, tractable
model on which examples and problems can be based, and to illustrate
characteristic thermomagnetic interactions. We shall leave it to the prob-
lems to explore some of these properties.

With the magnetic case always in mind as a prototype for generaliza-
tions, we return to explicit consideration of simple systems.
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PROBLEMS

38-1. Calgulate the three equations of state of the paramagnetic model of
equation 3.66. That is, calculate 7(S, I, N), B.(S,I, N), and p(S, I, N). (Note
that the fundamental equation of this problem is independent of V, and that
more generally there would be four equations of state.) Show that the three
equations of state satisfy the Euler relation.

3.8-2. Repeat Problem 3.8-1 for a system with the fundamental equation

= Fo 42
U 2NXI + Neexp (2S/NR)

where x and ¢ are positive constants.

3-9 MOLAR HEAT CAPACITY AND OTHER DERIVATIVES

The first derivatives of the fundamental equation have been seen to
have important physical significance. The various second derivatives are
descriptive of material properties, and these second derivatives often are
the quantities of most direct physical interest. Accordingly we exhibit a
few particularly useful second derivatives and illustrate their utility. In
Chapter 7 we shall return to study the formal structure of such second
derivatives, demonstrating that only a small number are independent and
that all others can be related to these few by a systematic “reduction
scheme.” For simple nonmagnetic systems the basic set of derivatives (to
which a wide set of others can be related) are just three.

The coefficient of thermal expansion 1s defined by

_1/avy _ 1(0dV
«=(57), - v(57), (3.67)
The coefficient of thermal expansion is the fractional increase in the
volume per unit increase in the temperature of a system maintained at

constant pressure (and constant mole numbers).
The isothermal compressibility is defined by

1{ dv 1(dV
~o58), =~ %(57), (3.68)
The isothermal compressibility is the fractional decrease in volume per

unit increase in pressure at constant temperature.
The molar heat capacity at constant pressure is defined by

ool RE),-HE), oo

It

Ky
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The molar heat capacity at constant pressure 1s the quasi-static heat flux
per mole required to produce unit increase in the temperature of a system
maintained at constant pressure.

For systems of constant mole number all other second derivatives can
be expressed in terms of these three, and these three are therefore
normally tabulated as functions of temperature and pressure for a wide
variety of materials.

The origin of the relationships among second derivatives can be under-
stood in principle at this point, although we postpone a full exploration to
Chapter 7. Perhaps the simplest such relationship 1s the identity

A I

which follows directly from the elementary theorem of calculus to the
effect that the two mixed second partial denivatives of U with respect to V/
and S are equal

d (HU) d (HU) (3.71)

v\ as as\av

The two quantities appearing in equation (3.70) have direct physical
interpretations and each can be measured. The quantity (dT/dV), , is
the temperature change associated with adiabatic expansion of the volume;
the quantity (dP/dS), v, when written as T(dP/dQ),  is the product
of the temperature and the change in pressure associated with an intro-
duction of heat dQ into a system at constant volume. The prediction of
equality of these apparently unrelated quantities is a nontrivial result; in
effect, the first “triumph” of the theory. Needless to say, the prediction is
corroborated by experiment.

The analogue of equation 3.70, in the entropy representation, is

Jd (1 d (P
W(?)M = 5&(7% (3.72)

and we recognize that this is precisely the identity that we invoked in
equation 3.46 in our quest for a thermal equation of state to be paired
with the van der Waals equation.

In Chapter 7 we show in considerable detail that these equalities are
prototypes of a general class of analogous relationships referred to as
Maxwell relations. Although the Maxwell relations have the simple form
of equality of two derivatives, they, in turn, are degenerate cases of a more
general theorem that asserts that there must exist a relation among any
four derivatives. These general relations will permit any second derivative
(at constant N) to be expressed in terms of the basic set c,, a, and «;.
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To illustrate such anticipated relationships we first introduce two ad-
ditional second derivatives of practical interest; the adiabatic com-
pressibility k¢ and the molar heat capacity at constant volume c,.

The adiabatic compressibility is defined by

1/ dv 1/(3V
ke = ‘E(:a‘ﬁ): ‘v(:a?)s (3.73)

This quantity characterizes the fractional decrease in volume associated
with an isentropic increase in pressure (i.e., for a system that is adiabati-
cally insulated).

The molar heat capacity at constant volume, defined by

o).~ wlar), - wlam), e

CU

measures the quasi-static heat flux per mole required to produce unit
increase in the temperature of a system maintained at constant volume.
In Chapter 7 we show that

TVa?
cp=rc,+ 3.75
, N (3.75)
and
TVa?
Ky=Kg+ 3.76
T S NCP ( )

Again, our purpose here is not to focus on the detailed relationships (3.75)
and (3.76), but to introduce definitions of ¢,, a, and «, to call attention
to the fact that ¢,, a, and &, are normally tabulated as functions of T
and P, and to stress that all other derivatives (such as ¢, and «g) can be
related to ¢, a, and k. A systematic approach to all such equalities, and
a mnemonic device for recalling them as needed, is presented in Chap-
ter 7.
Problem 3.9-6 is particularly recommended to the student.

Example
For a particular material ¢p, «, and k, are tabulated as functions of T and P.
Find the molar volume v as a function of T and P.

Solution
We consider the “T-P plane.” The quantities ¢, @, and x;, are known at all
points in the plane, and we seek to evaluate v(T, P) at an arbitrary point in the

plane. Then
v v

dv = (—B—I;)po +(ﬁ)pd7—

= —uKk;dP + vadT
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or

‘f}" = —x;dP + adT

If (Ty, Fy) is a chosen reference point in the plane, and if (77, P’) is a point of
interest, we can integrate along the path shown (or any other convenient path).
For the path that we have chosen the term in dT vanishes for the “horizontal”

section of the path, and the term in dP vanishes for the * vertical” section of the
path, so that

.[T = ";:a(T, Po)dT— ";:'KT(TI, P)dP

or

v T P
In— = (T, Py) dT — kAT, P)dP
oo = [ AT B AT = [ (T P)

The value of the molar volume at the reference point (v,) must be specified; we
are then able to relate all other volumes to this volume.

P’ b —
P
BT 1
| |
| !
! |
[ I
| |
T, r—s T
PROBLEMS
3.9-1.
a) Show that for the multicomponent simple ideal gas
¢, =CcR
a=1/T

xkr=1/P
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[>]]

and Kg =

|

1

-+

¢
_ _ 1
cp=(c+1)R  wherec= Y cx;= NZCJNJ
J J

b) What is the value of ¢ for a monatomic ideal gas?

¢) Using the values found in part (a), corroborate equations 3.75 and 3.76.
3.9.2. Corroborate equation 3.70 for a multicomponent simple ideal gas, showing
that both the right- and left-hand members of the equation equal —~ T/c¥V (where
¢ is defined in Problem 3.9-1).

3.9-3. Compute the coefficient of expansion « and the isothermal compressibility
kr in terms of P and v for a system with the van der Waals equation of state
(equation 3.41).

3.9-4. Compute cj, c,, k5, and k- for the system in Problem 1.10-1(a). With these
values corroborate the validity of equations 3.75 and 3.76.

3.9-5. From equations 3.75 and 3.76 show that
cp/C, = Kp/Ks

3.96. A simple fundamental equation that exhibits sorme of the qualitative
properties of typical crystaline solids is

Y |
u= Aeb(v vg) S4/Je s/3R

where A, b, and y, are positive constants.

a) Show that the system satisfies the Nernst theorem.

b) Show that ¢, is proportional to T at low temperature. This is commonly
observed (and was explained by P. Debye by a statistical mechanical analysis,
which will be developed in Chapter 16).

¢) Show that ¢, = 3k, at high temperatures. This is the “equipartition value,”
which is observed and which will be demonstrated by statistical mechanical
analysis in Chapter 16.

d) Show that for zero pressure the coefficient of thermal expansion vanishes in
this model—a result that is incorrect. Hint: Calculate the value of v at P = 0.

3.9-7. The density of mercury at various temperatures is given here in grams /cr-

13.6202 (—10°C) 13.5217 (30°C)  13.3283 (110°C)
13.5955 (0°C) 13.4973 (40°C)  13.1148 (200°C)
13.5708 (10°C)  13.4729 (50°C)  12.8806 (300°C)
13.5462 (20°C)  13.3522 (100°C) 12.8572 (310°C)

Calculate a at 0°C, at 45°C, at 105°C, and at 305°C.

Should the stem of a mercury-in-glass thermometer be marked off in equal
divisions for equal temperature intervals if the coefficient of t+ -nal expansion of
glass is assumed to be strictly constant?
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3.9-8. For a particular material ¢p, a, and x, can be represented empirically by
power series in the vicinity of Ty, Py, as follows

cp=Cco+Asx+ Bz*>+ D.p+ E.p>+ Fp

a=a’+A7r+Bgs+ D,p+ E_p*+ Fap

kr=x°+ A7+ Bs*+Dp+Ep>+ Frp whearer=T-Ty,, p=P—P,
Find the molar volume explicitly as a function of T and P in the vicinity of
(To, Po)-

3.9-9. Calculate the molar entropy s(T, P,) for fixed pressure P, and for tempera-

ture T in the vicinity of T,,. Assume that ¢,, a, and x are given in the vicinity of

(T, Pp) as in the preceding problem, and assume that s(75, P,) is known.
3.9-10. By analogy with equations 3.70 and 3.71 show that for a paramagnetic

SyStCm
( ) V., ( aél ) S, V.N
E'S I, N ¥

oS o1
T =T| =
(aBe)lyN (aT)S,V,N

Interpret the physical meaning of this relationship.
3.9-11. By analogy with equations 3.70 and 3.71 show that for a paramagnetic

system
() 0= ()
vV Jsawn ol Jsv.w

3.9-12. The magnetic analogues of the molar heat capacities ¢, and ¢, are cg and
¢;. Calculate cgx(T, B,,N) and ¢,(T, B,, N) for the paramagnetic model of
equation 3.66. (Note that no distinction necd be made between ¢; , and ¢, , for
this model, because of the absence of a dependence on volume in the fundamental
relation (3.66). Generally all four heat capacities exist and are distinct.)

or, inverting,

3.9-13. The (isothermal) molar magnetic susceptibility is defined by
- ol a)
X=~N\38
Show that the susceptibility of the paramagnetic model of equation 3.66 varies

lnversely with the temperature, and evaluate x,, defined as the value of y for
= 1K.

3.9-14. Calculate the adiabatic molar susceptibility
a1
Xs= N 3B,

s a function of T and B, for ...e paramagnetic model of equation 3.66.
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3.9-15. Calculate the isothermal and adia. .¢ic molar susceptibilities (defined iy
Problems 3.9-13 and 3.9-14) for the system with fundamental equation

U=E L | Neexp(2SINR)
=2 Ny P

How are each of these related to the constant “x” appearing in the fundamenta}
relation?
3.9-16. Show that for the system of Problem 3.8-2

(52, (8,45,

o), (&), (5. - (55). -0

ar ), \as ), \aT]s as)s,_

That is, there is no “coupling” between the thermal and magnetic properties,
What is the (atypical) feature of the equation of state of this system that leads to
these results?

3.9-17. Calculate the heat transfer to a particular system if 1 mole is taken from
(Ty, Pp) to (2T, 2 P,) along a straight line in the TP plane. For this system it is
known that:

and

T, P)=a° (%) , where a° is a constant
0
cp(T, P) = ¢}, a constant
k(T, P) = x%, a constant
Hint: Use the relation (ds/3P);= —(dv/dT),, analogous to equations 3.70

through 3.72 (and to be derived systematically in Chapter 7), to establish that
dQ = Tds = ¢, dT — TvadP.
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REVERSIBLE PROCESSES AND
THE MAXIMUM WORK THEOREM

4-1 POSSIBLE AND IMPOSSIBLE PROCESSES

An engineer may confront the problem of designing a device to accom-
plish some specified task—perhaps to lift an elevator to the upper floors
of a tall building. Accordingly the engineer contrives a linkage or “engine”
that conditionally permits transfer of energy from a furnace to the
elevator; if heat flows from the furnace then, by virtue of the interconnec-
tion of various pistons, levers, and cams, the elevator is required to rise.
But “nature” (i.e., the laws of physics) exercises the crucial decision—will
the proposition be accepted or will the device sit dormant and inactive,
with no heat leaving the furnace and no rise in height of the elevator? The
outcome is conditioned by two criteria. First, the engine must obey the
laws of mechanics (including, of course, the conservation of energy).
Second, the process must maximally increase the entropy.

Patent registration offices are replete with failed inventions of impecca-
ble conditional logic (if 4 occurs then B must occur)—ingenious devices
that conform to all the laws of mechanics but that nevertheless sit
stubbornly inert, in mute refusal to decrease the entropy. Others operate,
but with unintended results, increasing the entropy more effectively than
envisaged by the inventor.

If, however, the net changes to be effected correspond to a maximal
permissible increase in the total entropy, with no change in total energy,
then no fundamental law precludes the existence of an appropriate
process. It may require considerable ingenuity to devise the appropriate
engine, but such an engine can be assumed to be permissible in principle.

Example 1
A particular system is constrained to constant mole number and volume, so that
no work can be done on or by the system. Furthermore, the heat capacity of the

91
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system is C, a constant. The fundamental equation of the system, for constant
volume, is § = S, + Cln(U/ ), so U = CT.

Two such systems, with equal heat capacities, have initial temperatures T,
and T, with T,, < T,,. An engine is to be designed to lift an elevator (i.e., to
deliver work to a purely mechanical system), drawing energy from the two
thermodynamic systems. What is the maximum work that can be so delivered?

Solution
The two thermal systems will be left at some common temperature 7;. The change
in energy of the two thermal systems accordingly will be

AU = 2CT, - C(Tyo + Typ)
and the work delivered to the mechanical system (the “elevator”) will be W =
—AU, or
W =C(Tyo + Ty — 2T;)
The change in total entropy will occur entirely in the two thermal systems, for
which

A Cl d Cl i Cl i
S=Clh—+Cln==2Cln—

Tyo Ty V1T
To maximize W we clearly wish to minimize 7, (¢f. the second equation
preceding), and by the third equation this dictates that we minimize AS. The
minimum possible AS is zero, corresponding to a reversible process. Hence the
optimum engine will be one for which

T/ = VTloTzo

W= C(Tyo + Ty — 2TyoTy )

As a postscript, we note that the assumption that the two thermal systems are
left at a common temperature is not necessary; W can be minumized with respect
to 7y, and T, separately, with the same result. The simplifying assumption of a
common temperature follows from a self-consistent argument, for if the final
temperature were different we could obtain additional work by the method
described.

and

Example 2

An interesting variant of Example 1 is one in which three bodies (each of the type
described in Example 1, with U = CT) have initial temperatures of 300 K, 350 K,
and 400 K, respectively. It is desired to raise one body to as high a temperature as
possible, independent of the final temperatures of the other two (and without
changing the state of any external system). What is the maximum achievable
temperature of the single body?

Solution
Designate the three initial temperatures, measured in units of 100 K, as T3, T,
and T, (T, = 3, T, = 3.5, and T; = 4). Similarly, designate the high temperature
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achieved by one of the bodies (in the same umts) as 7. It is evident that the two
remaining bodies will be left at the same temperature T, (for if they were to be
left at different temperatures we could extract work, as in Example 1, and insert it
as heat to further raise the temperature of the hot body). Then energy conserva-
tion requires

T,+2T. =T, + T, + T,=105

The total entropy change is

T?T,
AS:Cln( ¢ h)

TIT2T3
and the requirement that this be positive implies
T'T,2 LT, (=42)
Eliminating 7, by the energy conservation condition
T, 2
(5.25 - Th) T, > 42

A plot of the left-hand side of this equation is shown. The plot is restricted to
values of 7, between 0 and 10.5, the latter bound following from the energy
conservation condition and the requirement that T, be positive. The plot indi-
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cates that the maximum value of 7, for wiuch the ordinate is greater than 42, js
T, = 4.095 (or T, = 409.5 K)

and furthermore that this value satisfies the equality, and therefore corresponds to
a reversible process.

Another solution to this problem will be developed in Problem 4.6-7.

PROBLEMS

4.1-1. One mole of a monatomic ideal gas and one mole of an ideal van der
Waals fluid (Section 3.5) with ¢ = 3/2 are contained separately in vessels of fixed
volumes v and v,. The temperature of the ideal gas is T} and that of the van der
Waals fluid is T,. It is desired to bring the ideal gas to temperature T,,
maintaining the total energy constant. What is the final temperature of the van
der Waals fluid? What restrictions apply among the parameters (73, 7,, a, b, v,, 1,)
if it is to be possible to design an engine to accomplish this temperature inversion
(assuming, as always, that no external system is to be altered in the process)?

4.1-2. A rubber band (Section 3.7) is initially at temperature T and length Lp.
One mole of a monatomic ideal gas is initially at temperature 7; and volume V.
The ideal gas, maintained at constant volume Vg, is to be heated to a final
temperature TZ. The energy required is to be supplied entirely by the rubber
band. Need the length of the rubber band be changed, and, if so, by what
amount?

Answer:
Ifl=L,— L,
3R T¢-T,
P~(1"Y*>2b™YeLy( Ly~ Lo)In} 1- SRL —G—T—G + 3Rb™" (L~ Lo) In (T5/ T)
0 B

4.1-3. Suppose the two systems in Example 1 were to have heat capacities of the
form C(T) = DT", with n > 0:

a) Show that for such systems U = Uy + DT"*'/(n + 1)and S = S, + DT"/n.
What is the fundamental equation of such a system?

b) If the initial temperature of the two systems were T, and T, what would be
the maximum delivered work (leaving the two systems at a common temperature)?

Answer:
b)forn=2:

D 1 !
W=— Tl::) + Tzz) - _(leo + Tz%)) ]

3 7
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4-2 QUASI-STATIC AND REVERSIBLE PROCESSES

The central principle of entropy maximization spawns various theorems
of more specific content when specialized to particular classes of processes.
We shall turn our attention to such theorems after a preliminary refine-
ment of the descriptions of states and of processes.

To describe and characterize thermodynamic states, and then to de-
scribe possible processes, it is useful to define a thermodynamic configura-
tion space. The thermodynamic configuration space of a simple system is
an abstract space spanned by coordinate axes that correspond to the
entropy S and to the extensive parameters U, V, N,,..., N, of the system.
The fundamental equation of the system S§ = S(U,V, N,,..., N,) defines a
surface in the thermodynamic configuration space, as indicated schemati-
cally in Fig. 4.1. It should be noted that the surface of Fig. 4.1 conforms
to the requirements that (4S/dU)..., X3 e (=1/T) be positive, and
that U be a single valued function of S,..., Xp e

By definition, each point in the configuration space represents an
equilibrium state. Representation of a nonequilibrium state would require
a space of immensely greater dimension.

The fundamental equation of a composite system can be represented by
a surface in a thermodynamic configuration space with coordinate axes

, ...)

FIGURE 41
The hyper-surface S = S(U,. ..) in the thermodynamic configuration space of a
simple system.
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1 &;S =8SU--., X(I.l,)... UpX )

FIGURE 4.2
The hypersurface § = S(U®,...,X",...,U,...,X,...) in the thermodynamic con-
figuration space of a composite system.

corresponding to the extensive parameters of all of the subsystems. For a
composite system of two simple subsystems the coordinate axes can be
associated with the total entropy S and the extensive parameters of the
two subsystems. A more convenient choice is the total entropy S, the
extensive parameters of the first subsystem (U®, VM, N ND -y and
the extensive parameters of the composite system (U, V, N, N,, ...). An
appropriate section of the thermodynamic configuration space of a com-
posite system is sketched in Fig. 42.

Consider an arbitrary curve drawn on the hypersurface of Fig. 4.3, from
an initial state to a terminal state. Such a curve is known as a quasi-static
locus or a quasi-static process. A quasi-static process is thus defined in
terms of a dense succession of equilibrium states. It is to be stressed that a
quasi-static process therefore is an idealized concept, quite distinct from a
real physical process, for a real process always involves nonequilibrium
intermediate states having no representation in the thermodynamic con-
figuration space. Furthermore, a quasi-static process, in contrast to a real
process, does not involve considerations of rates, velocities, or time. The
quasi-static process simply is an ordered succession of equilibrium states,
whereas a real process is a femporal succession of equilibrium and
nonequilibrium states.

Although no real process is identical to a quasi-static process, it is
possible to contrive real processes that have a close relationship to
quasi-static processes. In particular, it is possible to} 1 a system through
a succession of states that coincides at any desired i _aber of points with



Quasi-static and Reversible Processes 97

a4,
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x0
N
FIGURE 4.3

Representation of a quasi-static process in the thermodynamic configuration space.

a given quasi-static locus. Thus consider a system originally in the state A
of Fig. 4.3, and consider the quasi-static locus passing through the points
A, B,C,..., H. We remove a constraint which permits the system to
proceed from A to B but not to points further along the locus. The system
“disappears” from the point A and subsequently appears at B, having
passed en route through nonrepresentable nonequilibrium states. If the
constraint is further relaxed, making the state C accessible, the system
disappears from B and subsequently reappears at C. Repetition of the
operation leads the system to states D, E, ..., H. By such a succession of
real processes we construct a process that is an approximation to the
abstract quasi-static process shown in the figure. By spacing the points
A, B,C, ... arbitrarily closely along the quasi-static locus we approximate
the quasi-static locus arbitrarily closely.

The identification of — P dV as the mechanical work and of TdS as the
heat transfer is valid only for quasi-static processes.

Consider a closed system that is to be led along the sequence of states
4,B,C,..., H approximating a quasi-static locus. The system is induced
to go from A to B by the removal of some internal constraint. The closed
System proceeds to B if (and only if) the state B has maximum entropy
among all newly accessible states. In particular the state B must have
higher entropy than the state 4. Accordingly, the physical process joining
States A and B in a closed system has unique directionality. It proceeds
from the state A4, of lowes tropy, to the state B, of higher entropy, but
hot inversely. Such processes are irreversible.
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A quasi-static locus can be approxi  ‘ed by a real process in a closed
system only if the entropy is monotonically nondecreasing along the quasi-.
static locus.

The limiting case of a quasi-static process in which the increase in the
entropy becomes vanishingly small is called a reversible process (Fig. 4.4). :
For such a process the final entropy is equal to the initial entropy, and the
process can be traversed in either direction.

S
The plane

/s=so

X g) \\\
N,
—
—
S—
—
A
(&)
X ]

FIGURE 44

A reversible process, along a quasi-static isentropic locus.

PROBLEMS

4.2-1. Does every reversible process coincide with a quasi-static locus? Does every
quasi-static locus coincide with a reversible process? For any real process starting
in a state A and terminating in a state H, does there exist some quasi-static locus
with the same two terminal states 4 and H? Does there exist some reversible
process with the same two terminal states?

4.2-2. Consider a monatomic ideal gas in a cylinder fitted with a piston. The walls
of the cylinder and the piston are adiabatic. The system is initially in equilibrium,
but the external pressure is slowly decreased. The energy change of the gas in the
resultant expansion dV is dU = — PdV. Show, from equation 3.34, that dS = 0,
so that the quasi-static adiabatic expansion is isentropic and reversible.
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4.2-3. A monatomic ideal gas is permitted to expand by a free expansion from V
to V + dV (recall Problem 3.4-8). Show that

NR
as = —V—dV

In a series of such infinitesimal free expansions, leading from ¥, to V;, show that

v,

%)
AS = NRIn| =
]

Whether this atypical (and infamous) “continuous free expansion” process
should be considered as quasi-static is a delicate point. On the positive side is the
observation that the terminal states of the infinitesimal expansions can be spaced
as closely as one wishes along the locus. On the negative side is the realization
that the system necessarily passes through nonequilibrium states during each
expansion; the irreversibility of the microexpansions is essential and irreducible.
The fact that dS > 0 whereas dQ = 0 is inconsistent with the presumptive
applicability of the relation dQ = TdS to all quasi-static processes. We define
(by somewhat circular logic!) the continuous free expansion process as being
“essentially irreversible” and non-quasi-static.

4.2-4. In the temperature range of interest a system obeys the equations
T = Av*/s P = —2AvIn(s/sy)

where A is a positive constant. The system undergoes a free expansion from v, to
u; (with v, > vp). Find the final temperature 7} in terms of the initial temperature
T, Vg, and u,. Find the increase in molar entropy.

4-3 RELAXATION TIMES AND IRREVERSIBILITY

Consider a system that is to be led along the quasi-static locus of Fig.
4.3. The constraints are to be removed step by step, the system being
permitted at each step to come to a new equilibrium state lying on the
locus. After each slight relaxation of a constraint we must wait until the
system fully achieves equilibrium, then we proceed with the next slight
relaxation of the constraint and we wait again, and so forth. Although this
is the theoretically prescribed procedure, the practical realization of the
process seldom follows this prescription. In practice the constraints usu-
ally are relaxed continuously, at some “sufficiently slow” rate.

The rate at which constraints can be relaxed as a system approximates a
quasi-static locus is characterized by the relaxation time 7 of the system.
For a given system, with a given relaxation time 7, processes that occur in
times short compared to 7 are not quasi-static, whereas processes that
occur in times long compared to 7 can be approximately quasi-static.

The physical considerations that determine the relaxation time can be
illustrated by the adiabatic expansion of a gas (recall Problem 4.2-2). If
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the plston is permitted to move outward only extremely slowly the process
is quasi-static (and reversible). If, however, the external pressure is de-
creased rapidly the resulting rapid motion of the piston is accompanied by
turbulence and inhomogeneous flow within the cylinder (and by an
entropy increase that “drives” these processes). The process is then neither
quasi-static nor reversible. To estimate the relaxation time we first recog-
nize that a slight outward motion of the piston reduces the density of the
gas immediately adjacent to the piston. If the expansion is to be reversible
this local *“rarefaction” in the gas must be homogenized by hydrodynamic
flow processes before the piston again moves appreciably. The rarefaction
itself propagates through the gas with the velocity of sound, reflects from
the walls of the cylinder, and gradually dissipates. The mechanism of
dissipation involves both diffusive reflection from the walls and viscous
damping within the gas. The simplest case would perhaps be that in which
the cylinder walls are so rough that a single reflection would effectively
dissipate the rarefaction pulse—admittedly not the common situation, but
sufficient for our purely illustrative purposes. Then the relaxation time
would be on the order of the time required for the rarefaction to

propagate across the system, or 7 = Vs /¢, where the cube root of the
volume is taken as a measure of the “length” of the system and c is
the velocity of sound in the gas. If the adiabatic expansion of the gas in
the cylinder is performed in times much longer than this relaxation time
the expansion occurs reversibly and isentropically. If the expansion is
performed in times comparable to or shorter than the relaxation time
there 1s an irreversible increase in entropy within the system and the
expansion, though adiabatic, is not isentropic.

PROBLEMS

4.3-1. A cylinder of length L and cross-sectional area A is divided into two
equal-volume chambers by a piston, held at the midpoint of the cylinder by a
setscrew. One chamber of the cylinder contains N moles of a monatomic ideal gas
at temperature T,. This same chamber contains a spring connected to the piston
and to the end-wall of the cylinder; the unstretched length of the spring is L/2,
so that it exerts no force on the piston when the piston is at its initial midpoint
position. The force constant of the spring is K. The other chamber of the
cylinder is evacuated. The setscrew is suddenly removed. Find the volume and
temperature of the gas when equilibrium is achieved. Assume the walls and the
piston to be adiabatic and the heat capacities of the spring, piston, and walls to be
negligible.

Discuss the nature of the processes that lead to the final equilibrium state. If
there were gas in each chamber of the cylinder the probler stated would be
indeterminate! Why?
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4-4 HEAT FLOW: COUPLED SYSTEMS
AND REVERSAL OF PROCESSES

Perhaps the most characteristic of all thermodynamic processes is the
quasi-static transfer of heat between two systems, and it is instructive to
examine this process with some care.

In the simplest case we consider the transfer of heat 4Q from one
system at temperature 7 to another at the same temperature. Such a
process is reversible, the increase in entropy of the recipient subsystem
dQ/T being exactly counterbalanced by the decrease in entropy —dQ/T
of the donor subsystem.

In contrast, suppose that the two subsystems have different initial
temperatures T,, and Ty, with T\, < T,,. Further, let the heat capacities
(at constant volume) be C,(T') and C,(T). Then if a quantity of heat dQ,
is quasi-statically inserted into system 1 (at constant volume) the entropy
increase is

_do, dT,
dSl - Tl - Cl(ﬂ) Tl (41)

and similarly for subsystem 2. If such infinitesimal transfers of heat from
the hotter to the colder body continue until the two temperatures become
equal, then energy conservation requires

7, T,
AU = ["c(T) T, + ['c(T) dT, = 0 (4.2)
Tho Ty

which determines 7. The resultant change in entropy is

7, C(T7) dT. +fT/C2(T2)
1
T;

AS =
To 1t I,

dT, (4.3)

In the particular case in which C; and C, are independent of T the
energy conservation condition gives

_ G, + G Ty
TG+ G 44
and the entropy increase is
AS = CI(T) Cl(T) (4.5)
n + G,In .
' TlO 2 T20

It is left to Problem 4.4-3 \ ‘emonstrate that this expression for AS is
lntrmswally positive,
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Several aspects of the heat transfer process deserve reflection.

First, we note that the process, though quasi-static, is irreversible; it is
represented in thermodynamic configuration space by a quasi-static locus
of monotonically increasing S.

Second, the process can be associated with the spontaneous flow of heat
from a hot to a cold system providing (a) that the intermediate wall
through which the heat flow occurs s thin enough that its mass (and hence
its contribution to the thermodynamic properties of the system) is negligi-
ble, and (&) that the rate of heat flow is sufficiently slow (i.e., the thermal
resistivity of the wall is sufficiently high) that the temperature remains
spatially homogeneous within each subsystem.

Third, we note that the entropy of one of the subsystems is decreased,
whereas that of the other subsystem is increased. It is possible to decrease
the entropy of any particular system, providing that this decrease is linked to
an even greater entropy increase in some other system. In this sense an
irreversible process within a given system can be “reversed”—with the
hidden cost paid elsewhere.

PROBLEMS

4.4-1. Each of two bodies has a heat capacity given, in the temperature range of
interest, by
C=A4+ BT

where 4 =8 J/K and B =2 X 1072 J/K2 If the two bodies are initially at
temperatures T;, = 400 K and T,, = 200 K, and if they are brought into thermal
contact, what is the final temperature and what is the change in entropy?

4.4-2. Consider again the system of Problem 4.4-1. Let a third body be available,
with heat capacity
C,= BT

and with an initial temperature of T,,. Bodies 1 and 2 are separated, and body 3
is put into thermal contact with body 2. What must the initial temperature T;, be
in order thereby to restore body 2 to its initial state? By how much is the entropy
of body 2 decreased in this second process?

4.4-3. Prove that the entropy change in a heat flow process, as given in equation
4.5, is intrinsically positive.

4.4-4. Show that if two bodies have equal heat capacities, each of which is
constant (independent of temperature), the equilibrium temperature achieved by
direct thermal contact is the arithmetic average of the initial temperatures.

4.4-5. Over a limited temperature range the heat capacity at constant volume of a
particular type of system is inversely proportional to the temperature.

a) What is the temperature dependence of the energy, at constant volume, for
this type of system?
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b) If two such systems, at initial temperatures T,, and T, are put into thermal
contact what is the equilibrium temperature of the pair?

4.4-6. A series of N + 1 large vats of water have temperatures Ty, T, T5,..., Ty
(with 7, > T,_,). A small body with heat capacity C (and with a constant
volume, independent of temperature) is initially in thermal equilibrium with the
vat of temperature T;,. The body is removed from this vat and immersed in the vat
of temperature T;. The process is repeated until, after N steps, the body is in
equilibrium with the vat of temperature 7. The sequence is then reversed, until
the body is once again in the initial vat, at temperature Tj,. Assuming the ratio of
temperatures of successive vats to be a constant, or

1/N
T./T, = (Ty/Tp)"

and neglecting the (small) change in temperature of any vat, calculate the change

in total entropy as

a) the body is successively taken “ up the sequence” (from T to Ty), and

b) the body is brought back “down the sequence” (from T, to T).

What is the total change in entropy in the sum of the two sequences above?
Calculate the leading nontrivial limit of these results as N — oo, keeping T

and T, constant. Note that for large N

N(x* —1) =Inx +(lnx)’/2N + ---

4-5 THE MAXIMUM WORK THEOREM

The propensity of physical systems to increase their entropy can be
channeled to deliver useful work. All such applications are governed by
the maximum work theorem.

Consider a system that is to be taken from a specified initial state to a
specified final state. Also available are two auxiliary systems, into one of
which work can be transferred, and into the other of which heat can be
transferred. Then the maximum work theorem states that for all processes
leading from the specified initial state to the specified final siate of the
primary system, the delivery of work is maximum (and the delivery of heat is
minimum) for a reversible process. Furthermore the delivery of work (and
of heat) is identical for every reversible process.

The repository system into which work is delivered is called a “reversi-
ble work source.” Reversible work sources are defined as systems enclosed by
adiabatic impermeable walls and characterized by relaxation times suffi-
ciently short that all processes within them are essentially quasi-static. From
the thermodynamic point of view the “conservative” (nonfrictional) sys-
tems considered in the theory of mechanics are reversible work sources.
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System

State A —> State B

(—AU) = Up=Ug

Reversible
heat source

Reversible

work source

FIGURE 4.5
Maximum work process. The delivered work Wy, is maximum and the delivered heat
Qrus is minimum if the entire process is reversible (A8, = 0).

The repository system into which heat is delivered is called a “reversible
heat source”!. Reversible heat sources are defined as systems enclosed by
rigid impermeable walls and characterized by relaxation times sufficiently
short that all processes of interest within them are essentially quasi-static. 1f
the temperature of the reversible heat source is T the transfer of heat dQ
to the reversible heat source increases its entropy according to the quasi-
static relationship dQ = TdS. The external interactions of a reversible
heat source accordingly are fully described by its heat capacity C(T) (the
definition of the reversible heat source imphes that this heat capacity is at
constant volume, but we shall not so indicate by an explicit subscript).
The energy change of the reversible heat source is dU = dQ = C(T)dT
and the entropy change is dS = [C(T)/T]dT. The various transfers
envisaged in the maximum work theorem are indicated schematically in
Fig. 4.5.

The proof of the maximum work theorem is almost immediate. Con-
sider two processes. Each leads to the same energy change AU and the
same entropy change AS within the primary subsystem, for these are
determined by the specified initial and final states. The two processes
differ only in the apportionment of the energy difference (— AU ) between
the reversible work source and the reversible heat source (— AU = Wy
+ Qgrus)- But the process that delivers the maximum possible work to the
reversible work source correspondingly delivers the least possible heat to
the reversible heat source, and therefore leads 1o the least possible entropy
increase of the reversible heat source (and thence of the entire system).

The use of the term source might be construed as biasing the terminology in favor of extraction of
heat, as contrasted with nyection; such a bias is not intended.
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The absolute minimum of AS,,,, for all possible processes, is attained
by any reversible process (for all of which AS,(,m, 0).

To recapitulate, energy conservation requires AU + Wipyws + Qgps = 0.
With AU fixed, to maximize Wyys is to mininuze Qgys. This is achieved by

minimizing Sp3s (since Sgpyg increases monotonically with positive heat

input Qgys). The minimum SRES therefore is achieved by minimum AS
or by Asmtal 0.

The foregoing “descriptive” proof can be cast into more formal lan-
guage, and this is particularly revealing in the case in which the initial and
final states of the subsystem are so close that all differences can be

expressed as differentials. Then energy conservation requires

total >

dU + dQgps + dWgws =0 (4.6)
whereas the entropy maximum principle requires

dQ RHS

dS,, = dS +
ot TRHS

>0 4.7)

It follows that

dWws < TausdS — dU (4.8)

The quantities on the right-hand side are all specified. In particular dS
and dU are the entropy and energy differences of the primary subsystem
in the specified final and initial states. The maximum work transfer
dWyws corresponds to the equality sign in equation 4.8, and therefore in
equation 4.7 (dS,,, = 0).

It is useful to calculate the maximum delivered work which, from
equation 4.8 and from the identity dU = dQ + dW, becomes

T,
dWgws (maximum) = (——';,@)dQ - dU

= [1 ~(Trus/T)(—dQ) +(—dW) (4.9)

That is, in an infinitesimal process, the maximum work that can be delivered
to the reversible work source is the sum of

(a) the work (—dW) directly extracted from the subsystem,
(b) a fraction (1 — Trys/T) of the heat (—dQ) directly extracted from
the subsystem.

The fraction (1 ~ Tgys/T) of the extracted heat that can be “converted”
to work in an infinitesimal process is called the thermodynamic engine
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efficiency, and we shall return to a discussion of that quantity in Section
4.5. However, it generally is preferable to solve maximum work problems in
terms of an overall accounting of energy and entropy changes (rather than to
integrate over the thermodynamic engine efficiency).

Returning to the total (noninfinitesimal) process, the energy conserva-
tion condition becomes

AUsubsysnem + Qgpus + Waws = 0 (4-10)

whereas the reversibility condition is

AS ot = ASqbsystem T fdQRHS/TRHS =0 (4.11)

In order to evaluate the latter integral it is necessary to know the heat
capacity Crus(T) = dQrus/dTrus of the reversible heat source. Given
Crus(T) the integral can be evaluated, and one can then also infer the net
heat transfer Qpys. Equation 4.10 in turn evaluates Wyys. Equations 4.10
and 4.11, evaluated as described, provide the solution of all problems based
on the maximum work theorem.

The problem is further simplified if the reversible heat source is a
thermal reservoir. A thermal reservoir is defined as a reversible heat source
that is so large that any heat transfer of interest does not alter the tempera-
ture of the thermal reservoir. Equivalently, a thermal reservoir is a reversi-
ble heat source characterized by a fixed and definite temperature. For
such a system equation 4.11 reduces simply to

AS + QI'CS

total — subsystem
T

AS =0 (4.12)

and Q.. (= Qgus) can be eliminated between equations 4.10 and 4.12,
giving
Waws = T,AS,

res subsystem

- AU,

subsystem (4 13 )

Finally, it should be recognized that the specified final state of the
subsystem may have a larger energy than the initial state. In that case the
theorem remains formally true but the “delivered work” may be negative.
This work which must be supplied to the subsystem will then be least (the
delivered work remains algebraically maximum) for a reversible process.

Example 1
One mole of an ideal van der Waals fluid is to be taken by an unspecified process
from the state 7, v, to the state 7, v, A second system is constrained to have a
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fixed volume and its initial temperature is T,,; its heat capacity is linear in the
temperature

C,(T)=DT (D = constant)

What is the maximum work that can be delivered to a reversible work source?

Solution

The solution parallels those of the problems in Section 4.1 despite the slightly
different formulations. The second system is a reversible heat source; for it the
dependence of energy on temperature is

U,(T) = sz(T)dT—; 1DT? + constant
and the dependence of entropy on temperature is
G,(T)
Sz(T) =f

For the primary fluid system the dependence of energy and entropy on T and v
is given in equations 3.49 and 3.51 from which we find
a

AU, = cR(T, ~ To)-%+v—0

dT = DT + constant

A y=b ]
S;=RIn - +chn—770

The second system {the reversible heat source) changes temperature from T, to
some as yet unknown temperature Tzf, so that

AU, = 1D(T3 - TZ)
and

AS, = D(Tzf“ Tzo)

The value of 75, is determined by the reversibility condition

AS, + AS, = Rln| 2
1 2 nvo—b

T,
) + eRln— + D(Ty ~ Ty) =0

or

The conservation of energy then determmes the work W, delivered to the
reversible work source

y~b T,
Ty = Ty~ RD 'In| - — cRD™'In-~

W, + AU, + AU, = 0
whence

1 a a
W, = - [30(73 - 73)] é[cR(T,— T~y

where we recall that 7, is given, whereas T, has been found.
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An equivalent problem, but with a somewhat simpler system (a mon-
atomic ideal gas and a thermal reservoir) is formulated in Problem 4.5-1.
In each of these problems we do not commit ourselves to any specific
process by which the result might be realized, but such a specific process is
developed in Problem 4.5-2 (which, with 4.5-1, is strongly recommended
to the reader).

Example2 Isotope Separation

In the separation of U3 and U2 to produce enriched fuels for atomic power
plants the naturally occurring uranium is reacted with fluorine to form uranium
hexafluoride (UF). The uranium hexafluoride is a gas at room temperature and
atmospheric pressure. The naturally occurring mole fraction of U is 0.0072, or
0.72%. 1t is desired to process 10 moles of natural UF, to produce 1 mole of 2%
enriched material, leaving 9 moles of partially depleted material. The UF, gas can
be represented approximately as a polyatomic, multicomponent simple ideal gas
with ¢ = 7/2 (equation 3.40). Assuming the separation process to be carried out
at a temperature of 300 K and a pressure of 1 atm, and assuming the ambient
atmosphere (at 300 K) to act as a thermal reservoir, what is the minimum amount
of work required to carry out the enrichment process? Where does this work
(energy) ultimately reside?

Solution

The problem is an example of the maximum work theorem in which the minimum
work required corresponds to the maximum work “delivered.” The initial state of
the system is 10 moles of natural UF, at 7= 300 K and P = 1 atm. The final
state of the system i1s 1 mole of enriched gas and 9 moles of depleted gas at the
same temperature and pressure. The cold reservoir 1s also at the same tempera-
ture.

We find the changes of entropy and of energy of the system. From the
fundamental equation (3.40) we find the equations of state to be the familiar
forms

U=17/2NRT PV =NRT

These enable us to write the entropy as a function of 7 and P.

z 7 T P :
S = ZlN/sol +(5)NRln(—fo) - NRln(FO) - NR lellnxl
1= 1=

Ths last term— the “entropy of mixing” as defined following equation 3.40—is
the significant term in the isotope separation process.
We first calculate the mole fraction of U?*F, in the 9 moles of depleted
material; this 1s found to be 0.578%. Accordingly the change in entropy is
AS = —R[0.02In0.02 + 0.981n0.98] — 9R[0.00578 In 0.00578
+0.9941n 0.994] + 10R [0.0072 In 0.0072 + 0.9928 In 0.9928]
= — 0.0081R = — 0.067J/K

The gas ejects heat.
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There is no change in the energy of the gas, and all the energy supplied as work
is transferred to the ambient atmosphere as heat. That work, or heat, is

—~ Wiws = Q,.,= —TAS= 300x0.067 = 20

If there existed a semipermeable membrane, permeable to U*°F, but not to
U?8F,, the separation could be accomplished simply. Unfortunately no such
membrane exists. The methods employed in practice are all dynamic (non-quasi-
static) processes that exploit the small mass difference of the two isotopes—in
ultracentrifuges, in mass spectrometers, or in gaseous diffusion.

PROBLEMS

4.5-1. One mole of a monatomic ideal gas is contained in a cylinder of volume
1073 m? at a temperature of 400 K. The gas is to be brought to a final state of
volume 2 X 1073 m® and temperature 400 K. A thermal reservoir of temperature
300 K 1s available, as is a reversible work source. What is the maximum work that
can be delivered to the reversible work source?

Answer:
Weaws = 300 RIn2

4.5-2. Consider the following process for the system of Problem 4.5-1. The ideal
gas is first expanded adiabatically (and isentropically) until its temperature falls
to 300 K; the gas does work on the reversible work source in this expansion. The
gas is then expanded while in thermal contact with the thermal reservoir. And
finally the gas is compressed adiabatically until its volume and temperature reach
the specified values (2 X 1073 m® and 400 K).

a) Draw the three steps of this process on a T — V diagram, giving the equation
of each curve and labelling the numerical coordinates of the vertices.

b) To what volume must the gas be expanded in the second step so that the
third (adiabatic) compression leads to the desired final state?

¢) Calculate the work and heat transfers in each step of the process and show
that the overall results are identical to those obtained by the general approach of
Example 1.

4.5-3. Describe how the gas of the preceding two problems could be brought to
the desired final state by a free expansion. What are the work and heat transfers
in this case? Are these results consistent with the maximum work theorem?

4.5-4. The gaseous system of Problem 4.5-1 is to be restored to its initial state.
Both states have temperature 400 K, and the energies of the two states are equal
(U = 600 R). Need any work be supplied, and if so, what is the minimum
supplied work? Note that the thermal reservoir of temperature 300 K remains
accessible.
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4.5-5. If the thermal reservoir of Problem 4.5-1 were to be replaced by a
reversible heat source having a heat capacity of the form

Cc(T) = (2 + %)R

and an initial temperature of Tgys, = 300 K, again calculate the maximum
delivered work.

Before doing the calculation, would you expect the delivered work to be greater,
equal to, or smaller than that calculated in Prob. 4.5-1? Why?

4.5-6. A system can be taken from state A to state B (where Sy = S,) either (a)
directly along the adiabat S = constant, or (b) along the isochore AC and the
isobar CB. The difference in the work done by the system is the area enclosed
between the two paths in a P-V diagram. Does this contravene the statement that
the work delivered to a reversible work source is the same for every reversible
process? Explain!
4.5-7. Consider the maximum work theorem in the case in which the specified
final state of the subsystem has lower energy than the initial state. Then the
essential logic of the theorem can be summarized as follows: “Extraction of heat
from the subsystem decreases its entropy. Consequently a portion of the extracted
heat must be sacrificed to a reversible heat source to effect a net increase in
entropy; otherwise the process will not proceed. The remainder of the extracted
heat 1s available as work.”

Similarly summarize the essential logic of the theorem in the case in which the

final state of the subsystem has larger energy and larger entropy than the initial
state.

45-8. If S;< S, and Uy > U, does this imply that the delivered work is
negative? Prove your assertion assuming the reversible heat source to be a thermal
I€Servoir.

Does postulate III, which states that S is a monotonically increasing function
of U, disbar the conditions assumed here? Explain.

4.5-9. Two identical bodies each have constant and equal heat capacities (C, =
C, = C, a constant). In addition a reversible work source is available. The initial
temperatures of the two bodies are T}, and T,,. What is the maximum work that
can be delivered to the reversible work source, leaving the two bodies in thermal
equilibrium? What is the corresponding equilibrium temperature? Is this the
minimum attainable equilibrium temperature, and if so, why? What is the
maximum attainable equilibrium temperature?

For C = 8 J/K, T\, = 100°C and T, = 0°C calculate the maximum delivered
work and the possible range of final equilibrium temperature.

Answer:
T/ml.n = 46°C T/max = SOOC
W= = C[|Ty, — [T I’ = 62.2]
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4.5-10. Two identical bodies each have heat capacities (at constant volume) of
C(T)=a/T
The initial temperatures are T, and T, with T,q > Ty,. The two bodies are to be
brought to thermal equilibrium with each other (maintaining both volumes
constant) while delivering as much work as possible to a reversible work source.
What is the final equilibrium temperature and what is the maximum work
delivered to the reversible work source?
Evaluate your answer for T,; = T;, and for T, = 2T ,.

Answer:
W=aln®/8)if T,y = 2Ty,

4.5-11. Two bodies have heat capacities (at constant volume) of
C, =aT
, = 2bT

The initial temperatures are T}, and T, with T, > To. The two bodies are to be
brought to thermal equilibrium (maintaining both volumes constant) while de-
livering as much work as possible to a reversible work source. What is the final
equilibrium temperature and what is the (maximum) work delivered to the
reversible work source?

4.5-12. One mole of an ideal van der Waals fluid is contained in a cylinder fitted
with a piston. The initial temperature of the gas is 7, and the initial volume is v,.
A reversible heat source with a constant heat capacity C and with an initial
temperature T, is available. The gas is to be compressed to a volume of v, and
brought into thermal equilibrium with the reversible heat source. What is the
maximum work that can be delivered to the reversible work source and what is
the final temperature?

Answer:

R 1/(cR+C)
— U' - b cRT
U v — b 7T,

4.5-13. A system has a temperature-independent heat capacity C. The system is
initially at temperature 7, and a heat reservoir is available, at temperature 7T,

(with T, < T;). Find the maximum work recoverable as the system is cooled to the
temperature of the reservoir.

4.5-14. If the temperature of the atmosphere is 5°C on a winter day and if 1 kg of
water at 90°C is available, how much work can be obtained as the water is cooled
to the ambient temperature? Assume that the volume of the water is constant, and
assume that the molar heat capacity at constant volume is 75 J/mole K and is
independent of temperature.

Answer:
45 x 10%)
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4.5-15. A rigid cylinder contains an internal adiabatic piston separating it into
two chambers, of volumes V}, and V,,. The first chamber contains one mole of a
monatomic ideal gas at temperature T;. The second chamber contains one mole
of a simple diatomic ideal gas (¢ = 5/2) at temperature T}, In addition a thermal
reservoir at temperature 7T, is available. What is the maximum work that can be
delivered to a reversible work source, and what are the corresponding volumes
and temperatures of the two subsystems?

4.5-16. Each of three identical bodies has a temperature-independent heat capac-
ity C. The three bodies have initial temperatures 7, > 7, > 7,. What is the
maximum amount of work that can be extracted leaving the three bodies at a
common final temperature?

4.5-17. Each of two bodies has a heat capacity given by

C=A+2BT

where A =8 J/K and B=2x 1072 J/K2 If the bodies are initially at
temperatures of 200 K and 400 K, and if a reversible work source is available,
what is the minimum final common temperature to which the two bodies can be
brought? If no work can be extracted from the reversible work source what is the
maximum final common temperature to which the two bodies can be brought?

What is the maximum amount of work that can be transferred to the reversible
work source?

Answer:
T.n= 293K

4.5-18. A particular system has the equations of state
T=As/v"? and P=T*/440'/?

where A is a constant. One mole of this system is initially at a temperature 7, and
volume V. It is desired to cool the system to a temperature 7, while compressing
it to volume V, (T, < Ty; V, < W}). A second system is available. It is initially at a
temperature 7, (7_ < T,). Its volume is kept constant throughout, and its heat
capacity is

C, = BTY? (B = constant)
What is the minimum amount of work that must be supplied by an external agent
to accomplish this goal?
4.5-19. A particular type of system obeys the equations

u

T= 3 and P=awT
where @ and b are constants. Two such systems, each of 1 mole, are initially at
temperatures 7, and 7, (with 7, > T}) and each has a volume ¢,. The systems are
to be brought to a common temperature T, with each at the same final volume vy
The process is 10 be such as to deliver maximum work to a reversible work source.
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a) What is the final temperature 7,7
b) How much work can be delivered? Express the result in terms of 7', T, vy, v,
and the constants @ and b.
4.5-20. Suppose that we have a system in some initial state (we may think of a
tank of hot, compressed gas as an example) and we wish to use it as a source of
work. Practical considerations require that the system be left finally at atmo-
spheric temperature and pressure, in equilibrium with the ambient atmosphere.
Show, first, that the system does work on the atmosphere, and that the work
actually available for useful purposes is therefore less than that calculated by a
straightforward application of the maximum work theorem. In engineering
parlance this net available work is called the “availability”.
a) Show that the availability is given by

Availability = (Uy + PoVy = TyeSo) = (U + PoeV; = TareS))
where the subscript f denotes the final state, in which the pressure is P,
temperature is T, ..
b) If the original system were to undergo an internal chemical reaction during the
process considered, would that invalidate this formula for the availability?
4.5-21. An antarctic meteorological station suddenly loses all of its fuel. It has N
moles of an inert “ideal van der Waals fluid” at a high temperature 7, and a high
pressure P,. The (constant) temperature of the environment 1s 7; and the
atmospheric pressure is P,. If operation of the station requires a continuous
power 9, what is the longest conceivable time, 1., that the station can operate?
Calculate ¢, in terms of T,, Ty, P,, Py, , N and the van der Waals constants a,
b, and c.

Note that this is a problem in availability, as defined and discussed in Problem

4.5-20. In giving the solution it is not required that the molar volume v,, be solved
explicitly in terms of 7, and P,; it is sufficient simply to designate it as v,(T}, P,)
and similarly for vy (T, Pp).
4.5-22. A “geothermal” power source is available to drive an oxygen production
plant. The geothermal source is simply a well containing 10* m® of water, initially
at 100°C; nearby there is a huge (“infinite”) lake at 5°C. The oxygen is to be
separated from air, the separation being carried out at 1 atm of pressure and at
20°C. Assume air to be 1 oxygen and % nitrogen (in mole fractions), and assume
that it can be treated as a mixture of ideal gases. How many moles of O, can be
produced in principle (i.e., assuming perfect thermodynamic efficiency) before
exhausting the power source?

and the

4-6 COEFFICIENTS OF ENGINE,
REFRIGERATOR, AND HEAT PUMP PERFORMANCE

As we saw in equations 4.6 and 4.7, in an infinitestmal reversible
process involving a “hot” subsystem, a “cold” reversible heat source, and a
reversible work source

(dQ, + aW,) + dQ .+ dWxws = 0 (4.14)
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and

=0 (4.15)

where we now indicate the “hot” system by the subscript 4 and th,
“cold” reversible heat source by the subScrlpt ¢. In such a process thg
delivered work dWpyys is algebraically maximum. This fact leads
criteria for the operation of various types of useful devices.

The most immediately evident system of interest is a thermodynami,
engine. Here the “hot subsystem” may be a furnace or a steam boiler,
whereas the “cold” reversible heat source may be the ambient atmosphere
or, for a large power plant, a river or lake. The measure of performance s
the fraction of the heat (—dQ,) withdrawn® from the hot system tha
is converted to work dWp,,. Taking dW,, =0 in equation 4.14 (it i
simply additive to the delivered work in equation 4.9) we find the
thermodynamic engine efficiency «,.

~

- dWRWS — _ Tc
Tla0) T, 41

3

The relationship of the various energy exchanges is indicated in Fig. 4.6¢,

For a subsystem of given temperature 7, the thermodynamic engine
efficiency increases as 7, decreases. That is, the lower the temperature of
the cold system (to which heat is delivered), the higher the engine
efficiency. The maximum possible efficiency, €, = 1, occurs if the tempera-
ture of the cold heat source is equal to zero. If a reservoir at zero
temperature were available as a heat repository, heat could be freely and
fully 3Corwerted into work (and the world “energy shortage” would not
exist!?).

A refrigerator is simply a thermodynamic engine operated in reverse
(Fig. 4.7b). The purpose of the device i1s to extract heat from the cold
system and, with the input of the minimum amount of work, to eject that
heat into the comparatively hot ambient atmosphere. Equations 4.14 and

2The problem of signs may be confusing. Throughout this book the symbols W and Q, or dW and
dQ, indicate work and heat inputs. Heat withdrawn from a system is (— Q) or (—dQ). Thusif 5 J are
withdrawn from the hot subsystem we would write that the heat withdrawn is (— Q,) = 5 J, whereas
0,, the heat input, would be — 5 J. For clarity in this chapter we use the parentheses to serve asa
reminder that (—Q,) is to be considered as a positive quantity in the particular example being
discussed.

3The energy shortage is, in any case, a misnomer. Energy is conserved! The shortage is one of
“entropy sinks”—of systems of low entropy. Given such systems we could bargain with nature,
offering to allow the entropy of such a system to increase (as by allowing a hydrocarbon to oxidize, of
heat to flow to a low temperature sink, or a gas to expand) if useful tasks were simultaneousty done.
There is only a “neg-entropy” shortage!
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Energy Source
(Furnace, Boiler, ...)
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FIGURE 4.6
Engine, refrigerator, and heat pump. In this diagram d W=d Wy,

4.15 remain true, but the coefficient of refrigerator performance represents
the appropriate criterion for this device—the ratio of the heat removed
from the refrigerator (the cold system) to the work that must be purchased
from the power company. That is

Lo (c40) _ T,
" (—dWRWS) Th—Tc

(4.17)

If the temperatures 7, and T, are equal, the coefficient of refrigerator
performance becomes infinite: no work is then required to transfer heat
from one system to the other. The coefficient of performance becomes
progressively smaller as the temperature T, decreases relative to 7,. And if
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the temperature 7, approaches zero, the coefficient of performance also
approaches zero (assuming 7, fixed). It therefore requires huge amounts
of work to extract even trivially small quantities of heat from a system
near T, = Q.

We now turn our attention to the heat pump. In this case we are
interested in heating a warm system, extracting some heat from a cold
system, and extractmg some work from a reversible work source. In a
practical case the warm system may be the interior of a home in winter,
the cold system is the outdoors, and the reversible work source 1s again the
power company. In effect, we heat the home by removing the door of a
refrigerator and pushing it up to an open window. The inside of the
refrigerator is exposed to the outdoors, and the refrigerator attempts (with
negligible success) further to cool the outdoors. The heat extracted from
this huge reservoir, together with the energy purchased from the power
company, is ejected directly into the room from the cooling coils in the
back of the refrigerator.

The coefficient of heat pump performance e, is the ratio of the heat
delivered to the hot system to the work extracted from the reversible work
source.

a0 T,
== = 4.18
e (—dWRWS) Th - Tc ( )

PROBLEMS

4.6-1. A temperature of 0.001 K is accessible in low temperature laboratories with
moderate eflort. If the price of energy purchased from the electric utility company
is 15¢/kW h what would be the minimum cost of extraction of one watt-hour of
heat from a system at 0.001 K? The “ warm reservoir” is the ambient atmosphere
at 300 K.

Answer:

345

4.6-2. A home is to be maintained at 70°F, and the external temperature is 50°F.
One method of heating the home is to purchase work from the power company
and to convert it directly into heat: This is the method used in common electric
room heaters. Alternatively, the purchased work can be used to operate a heat
pump. What is the ratio of the costs if the heat pump attains the ideal thermody-
namic coefficient of performance?

4.6-3. A household refrigerator is maintained at a temperature of 35°F. Every
time the door is opened, warm material is placed inside, introducing an average of
50 kcal, but making only a small change in the temperature of the refrigerator.
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The door 1s opened 15 times a day, and the refrigerator operates at 15% of the
ideal coefficient of performance. The cost of work is 15¢/kW h. What is the
monthly bill for operating this refrigerator?

4.6-4. Heat is extracted from a bath of liquid helium at a temperature of 4.2 K.
The high-temperature reservoir is a bath of liquid nitrogen at a temperature of
77.3 K. How many Joules of heat are introduced into the nitrogen bath for each
Joule extracted from the helium bath?

4.6-5. Assume that a particular body has the equation of state U = NCT with
NC =10 J/K and assume that this equation of state is valid throughout the
temperature range from 0.5 K to room temperature. How much work must be
expended to cool this body from room temperature (300 K) to 0.5 K, using the
ambient atmosphere as the hot reservoir?

Answer:
16.2 kl.

4.6-6. One mole of a monatomic ideal gas is allowed to expand isothermally from
an initial volume of 10 liters to a final volume of 15 liters, the temperature being
maintained at 400 K. The work delivered is used to drive a thermodynamic
refrigerator operating between reservoirs of temperatures 200 and 300 K. What is
the maximum amount of heat withdrawn from the low-temperature reservoir?

4.6-7. Give a “constructive solution™ of Example 2 of Section 4.1. Your solution
may be based on the following procedure for achieving maximum temperature of
the hot body. A thermodynamic engine is operated between the two cooler
bodies, extracting work unti! the two cooler bodies reach a common temperature.
This work is then used as the input to a heat pump, extracting heat from the
cooler pair and heating the hot body. Show that this procedure leads to the same
result as was obtained in the example.

4.6-8. Assume that 1 mole of an ideal van der Waals fluid is expanded isother-
mally, at temperature 7, from an initial volume ¥, to a final volume V,. A
thermal reservoir at temperature 7, is available. Apply equation 4.9 to a differen-
tial process and integrate to calculate the work delivered to a reversible work
source. Corroborate by overall energy and entropy conservation.

Hint: Remember to add the direct work transfer PdV to obtain the total work
delivered to the reversible work source (as in equation 4.9).

4.6-9. Two moles of a monatomic ideal gas are to be taken from an initial state
(P,,V,) 1o a final state (P, = B’P,, ¥, = V,/B), where B is a constant. A reversible
work source and a thermal reservoir of temperature 7, are available. Find the
maximum work that can be delivered to the reversible work source.

Given values of B, P, and T,, for what values of V, is the maximum delivered
work positive?

4.6-10. Assume the process in Problem 4.6-9 to occur along the locus P = B/V?,
where B = P,V?2. Apply the thermodynamic engine efficiency to a differential
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process and integrate to corroborate the result obtained in Problem 4.6-9. Recall
the hint given in Problem 4.6-8.

4.6-11. Assume the process in Problem 4.6-9 to occur along a straight-line locus
in the 7-V plane. Integrate along this locus and again corroborate the results of
Problems 4.6-9 and 4.6-10.

4-7 THE CARNOT CYCLE

Throughout this chapter we have given little attention to specific
processes, purposefully stressing that the delivery of maximum work is a
general attribute of all reversible processes. It is useful nevertheless to
consider briefly one particular type of process—the “Carnot cycle”—both
because it elucidates certain general features and because this process has
played a critically important role in the historical development of thermo-
dynamic theory.

A system is to be taken from a particular initial state to a given final
state while exchanging heat and work with reversible heat and work
sources. To describe a particular process it is not sufficient merely to
describe the path of the system in its thermodynamic configuration
space. The critical features of the process concern the manner in which the
extracted heat and work are conveyed to the reversible heat and work
sources. For that purpose auxiliary systems may be employed. The aux-
iliary systems are the “tool” or “devices” used to accomplish the task at
hand, or, in a common terminology, they constitute the physical engines
by which the process is eflected.

Any thermodynamic system—a gas in a cylinder and piston, a magnetic
substance in a controllable magnetic field, or certain chemical
systems—can be employed as the auxiliary system. 1t is only required that
the auxiliary system be restored, at the end of the process, to its initial
state; the auxiliary system must not enter into the overall energy or entropy
accounting. It is this cyclic nature of the process within the auxihiary
system that is reflected in the name of the Carnot “cycle.”

For clarity we temporarily assume that the primary system and the
reversible heat source are each thermal reservoirs, the primary system
being a “hot reservoir” and the reversible heat source being a ‘“‘cold
reservoir”; this restriction merely permits us to consider finite heat and
work transfers rather than infinitesimal transfers.

The Carnot cycle is accomplished in four steps, and the changes of the
temperature and the entropy of the auxiliary system are plotted for each
of these steps in Fig. 4.7.

1. The auxiliary system, originally at the same temperature as the
primary system (the hot reservoir), is placed in contact with that reservoir
and with the reversible work source. The auxiliary system is then caused
to undergo an isothermal process by changing some convenient extensive
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FIGURE 4.7
The 7-S and P-V diagrams for the auxiliary system in the Camot cycle.

parameter; if the auxiliary system is a gas it may be caused to expand
isothermally, if it is a magnetic system its magnetic moment may be
decreased isothermally, and so forth. In this process a flux of heat occurs
from the hot reservoir to the auxiliary system, and a transfer of work
(/ PdV or its magnetic or other analogue) occurs from the auxiliary
system to the reversible work source. This is the isothermal step 4 — B in
Fig. 4.7.

2. The auxiliary system, now in contact only with the reversible work.
source, is adiabatically expanded (or adiabatically demagnetized, etc.)
until its temperature falls to that of the cold reservoir. A further transfer
of work occurs from the auxiliary system to the reversible work source.
The quasi-static adiabatic process occurs at constant entropy of the
auxiliary system, as in B — C of Fig. 4.7.

3. The auxiliary system is isothermally compressed while in contact with
the cold reservoir and the reversible work source. This compression is
continued until the entropy of the auxiliary system attains its initial value.
During this process there is a transfer of work from the reversible work
source to the auxiliary system, and a transfer of heat from the auxiliary
system to the cold reservoir. This is the step C — D in Fig. 4.7.

4. The auxiliary system is adiabatically compressed and receives work
from the reversible work source. The compression brings the auxiliary
system to its initial state and completes the cycle. Again the entropy of the
auxiliary system is constant, from D to A4 in Fig. 4.7.

The heat withdrawn from the primary system (the hot reservoir) in
process 1 1s T, AS, and the heat transferred to the cold reservoir in process
3 is T_AS. The difference (T, — T,) AS is the net work transferred to the
reversible work source in the complete cycle. On the T-§ diagram of Fig.
4.7 the heat 7, AS withdrawn from the primary system is represented by
the area bounded by the four points labeled ABS;S,, the heat ejected to
the cold reservoir is represented by the area CDS,S,, and the net work
delivered is represented by the area ABCD. The coefficient of perfor-
mance is the ratio of the area ABCD to the area ABS,S, or (T, — T)/T,.
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The Carnot cycle can be represented on any of a number of other
diagrams, such as a P~V diagram or a T-V diagram. The representation
on a P—V diagram is indicated in Fig. 4.7. The precise form of the curve
BC, representing the dependence of P on V in an adiabatic (isentropic)
process, would follow from the equation of state P = P(S,V,N) of the
auxiliary system.

If the hot and cold systems are merely reversible heat sources, rather
than reservoirs, the Carnot cycle must be carried out in infinitesimal steps.
The heat withdrawn from the primary (hot) system in process 1 is then
T, dS rather than T, AS, and similarly for the other steps. There is clearly
no difference in the essential results, although 7, and 7, are continually
changing variables and the net evaluation of the process requires an
integration over the differential steps.

It should be noted that real engines never attain ideal thermodynamic
efficiency. Because of mechanical friction, and because they cannot be
operated so slowly as to be truly quasi-static, they seldom attain more
than 30 or 40% thermodynamic efficiency. Nevertheless, the upper limit on
the efficiency, set by basic thermodynamic principles, is an important
factor in engineering design. There are other factors as well, to which we
shall return in Section 4.9.

Example

N moles of a monatomic ideal gas are to be employed as the auxiliary system in a
Carnot cycle. The ideal gas is initially in contact with the hot reservoir, and in the
first stage of the cycle it is expanded from volume V, to volume V,.* Calculate
the work and heat transfers in each of the four steps of the cycle, in terms of 7},
T, V, Vg and N. Directly corroborate that the efficiency of the cycle is the
Carnot efficiency.

Solution
The data are given in terms of T and V; we therefore express the entropy and
energy as functions of 7, V, and N.

§= Nsy+ NRln

T3?VN,
763/2V0N
and

U= 3INRT

Then in the isothermal expansion at temperature 7,

V,
ASAB= SB— S, =NRIH(VB) and AU, =0
A

“Note that in this example quantities such as U, S, V, Q refer to the auxiliary system rather than to
the “primary system” (the hot reservoir).
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whence

V,
QAB = ThASABz NRThln(—B)
VA

and

Ve
W,, = — NRT,In| -2
VA

In the second step of the cycle the gas is expanded adiabatically until the
temperature falls to 7,, the volume meanwhile increasing to V.. From the equation
for S, we see that TV = constant, and

T, 3/2
Ve=Vp T

and
Qpc=0 Wge = AU = iNR(T, - T})

In the third step the gas is isothermally compressed to a volume V. This
volume must be such that it lies on the same adiabat as V, (see Fig. 4.7), so that

T, 3/2
Vo=Vl 7

c

Then, as in step 1,

Vb Va
Qcp = NRTcln( Vc) = NRTLln( VB)

and
V.
Wep= —NRTcln(—A)
VB

Finally, in the adiabatic compression

Qpa=0
and

Wpa=Upy = %NR(Th - Tc)

From these results we obtain
Ve
W=W,p+ Wse+ Wep+ W= —NR(T, ~ T )In A
A

and
-W/Q,5= (Th - Tc)/Th

which is the expected Carnot efficiency.
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PROBLEMS

4.7-1. Repeat the calculation of Example 5 assuming the “working substance” of
the auxiliary system to be 1 mole of an ideal van der Waals fluid rather than of a
monatomic ideal gas (recall Section 3.5).

4.7-2. Calculate the work and heat transfers in each stage of the Carnot cycle for
the auxiliary system being an “empty” cylinder (containing only electromagnetic
radiation). The first step of the cycle is again specified to be an expansion from V,
to V. All results are to be expressed in terms of V,, V;, T, and T.. Show that the
ratio of the total work transfer to the first-stage heat transfer agrees with the
Carnot efficiency.

4.7-3. A “primary subsystem” in the initial state A is to be brought reversibly to
a specified final state B. A reversible work source and a thermal reservoir at
temperature 7, are available, but no “auxiliary system” is to be employed. Is it
possible to devise such a process? Prove your answer. Discuss Problem 4.5-2 in
this context.

4.7-4. The fundamental equation of a particular fluid is UN:Vi = A(S — R)?
where 4 =2 % 1072 (K3mi/J3). Two moles of this fluid are used as the
auxiliary system in a Carnot cycle, operating between two thermal reservoirs at
temperature 100°C and 0°C. In the first isothermal expansion 10% J is extracted
from the high-temperature reservoir. Find the heat transfer and the work transfer
for each of the four processes in the Carnot cycle.

Calculate the efficiency of the cycle directly from the work and heat transfers
just computed. Does this efficiency agree with the theoretical Carnot efficiency?
Hint: Carnot cycle problems generally are best discussed in terms of a 7-§
diagram for the auxihary system.

4.7-5. One mole of the “simple paramagnetic model system” of equation 3.66 is
to be used as the auxiliary system of a Carnot cycle operating between reservoirs
of temperature 7, and 7. The auxiliary system initially has a magnetic moment I,
and is at temperature 7,. By decreasing the external field while the system is in
contact with the high temperature reservoir, a quantity of heat Q, is absorbed
from the reservoir; the system meanwhile does work (— W)) on the reversible
work source (i.e., on the external system that creates the magnetic field and
thereby induces the magnetic moment). Describe each step in the Carnot cycle
and calculate the work and heat transfer in each step, expressing each in terms of
7,, T., O,. and the parameters T, and I, appearing in the fundamental equation.

4.7-6. Repeat Problem 4.7-4 using the “rubber band” model of Section 3.7 as the
auxiliary system.
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4-8 MEASURABILITY OF THE
TEMPERATURE AND OF THE ENTROPY

The Carnot cycle not only illustrates the general principle of reversible
processes as maximum work processes, but it provides us with an oper-
ational method for measurements of temperature. We recall that the
entropy was introduced merely as an abstract function, the maxima of
which determine the equilibrium states. The temperature was then defined
in terms of a partial derivative of this function. It is clear that such a
definition does not provide a direct recipe for an operational measurement
of the temperature and that it is necessary therefore for such a procedure
to be formulated explicitly.

In our discussion of the efficiency of thermodynamic engines we have
seen that the efficiency of an engine working by reversible processes
between two systems, of temperatures 7, and T, is

e,=1-T/T, (4.19)

The thermodynamic engine efficiency is defined in terms of fluxes of heat
and work and is consequently operationally measurable. Thus a Carnot
cycle provides us with an operational method of measuring the ratio of
two temperatures.

Unfortunately, real processes are never truly quasi-static, so that real
engines never quite exhibit the theoretical engine efficiency. Therefore, the
ratio of two given temperatures must actually be determined in terms of
the limiting maximum efficiency of all real engines, but this is a difficulty
of practice rather than of principle.

The statement that the ratio of temperatures is a measurable quantity is
tantamount to the statement that the scale of temperature is determined
within an arbitrary multiplicative constant. The temperature of some
arbitrarily chosen standard system may be assigned at will, and the
temperatures of all other systems are then uniquely determined, with
values directly proportional to the chosen temperature of the fiducial
system.

The choice of a standard system, and the arbitrary assignment of some
definite temperature to it, has been discussed in Section 2.6. We recall that
the assignment of the number 273.16 to a system of ice, water, and vapor
in mutual equilibrium leads to the absolute Kelvin scale of temperature. A
Carnot cycle operating between this system and another system de-
termines the ratio of the second temperature to 273.16 K and conse-
quently determines the second temperature on the absolute Kelvin scale.

Having demonstrated that the temperature is operationally measurable
we are able almost trivially to corroborate that the entropy too is measur-
able. The ability to measure the entropy underlies the utility of the entire
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thermodynamic formalism. It is also of particular interest because of the
somewhat abstract nature of the entropy concept.

The method of measurement to be described yields only entropy
differences, or relative entropies—these differences are then converted to
absolute entropies by Postulate IV—the “Nernst postulate” (Section
1.10).

Consider a reversible process in a composite system, of which the
system of interest is a subsystem. The subsystem is taken from some
reference state (7, P,) to the state of interest (7}, P,) by some path in the
T-P plane. The change in entropy is

(T1.P)| [ JS as

S, — S, = f(TO’PO) [(ﬁ)PdT+(8—P~)TdP] (4.20)
(Tl,m( BS) [ (aP) ]

= N | (L) ar+dp 421

(To. P \ O aT | s (4.21)
T,
( P‘( V)[ (g-) dT+dP] (4.2,
(To Po) aT

Equation 4.21 follows from the elementary identity A.22 of Appendix A.
Equation 4.22 is less obvious, though the general methods to be developed
in Chapter 7 will reduce such transformations to a straightforward proce-
dure; an elementary but relatively cumbersome procedure is suggested in
Problem 4.8-1.

Now each of the factors in the integrand is directly measurable; the
factor (dP /3T )¢ requires only a measurement of pressure and tempera-
ture changes for a system enclosed by an adiabatic wall. Thus, the entropy
difference of the two arbitrary states (T, F,) and (T,, P,) is obtainable by
numerical integration of measurable data.

PROBLEMS

4.8-1. To corroborate equation 4.22 show that

(%)~ =[5,

First consider the right-hand side, and write generally that
dT = u,ds + u, dv

(8] el o
v Ys\Gu)» -

so that
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S8 U su

Similarly show that (%—I:)T =u,,u,,/u,, — u,, establishing the required iden-
tity.

4-9 OTHER CRITERIA OF ENGINE PERFORMANCE;
POWER OUTPUT AND “ENDOREVERSIBLE ENGINES”

As we have remarked earlier, maximum efficiency is not necessarily the
primary concern in design of a real engine. Power output, simplicity, low
initial cost, and various other considerations are also of importance, and,
of course, these are generally in conflict. An informative perspective on
the criteria of real engine performance is afforded by the “endoreversible
engine problem.”?

Let us suppose once again that two thermal reservoirs exist, at tempera-
tures 7, and T, and that we wish to remove heat from the high
temperature reservoir, delivering work to a reversible work source. We
now know that the maximum possible efficiency is obtained by any
reversible engine. However, considerations of the operation of such an
engine immediately reveals that its power output (work delivered per unit
time) is atrocious. Consider the very first stage of the process, in which
heat is transferred to the system from the hot reservoir. If the working
fluid of the engine is at the same temperature as the reservoir no heat will
flow; whereas if it is at a lower temperature the heat flow process (and
hence the entire cycle) becomes irreversible. In the Carnot engine the
temperature difference is made “infinitely small,” resulting in an “in-
finitely slow” process and an “infinitely small” power output.

To obtain a nonzero power output the extraction of heat from the high
temperature reservoir and the insertion of heat into the low temperature
reservoir must each be done irreversibly.

An endoreversible engine is defined as one in which the two processes of
heat transfer (from and to the heat reservoirs) are the only irreversible
processes in the cycle.

To analyze such an engine we assume, as usual, a high temperature
thermal reservoir at temperature 7,, a low temperature thermal reservoir
at temperature T, and a reversible work source. We assume the isothermal
strokes of the engine cycle to be at T, (w designating “warm”) and 7, (¢
designating “tepid”), with T, > T, > T, > T,. Thus heat flows from the
high temperature reservoir to the working fluid across a temperature
difference of T, — T, as indicated schematically in Fig. 4.8. Similarly, in
the heat rejection stroke of the cycle the heat flows across the temperature
difference 7, — T..

3F. L. Curzon and B. Ahlbom, Amer. J. Phys 43, 22 (1975). See also M. H Rubin, Phys Rev
A19, 1272 and 1279 (1979) (and references therein) for a sophisticated analysis and for further
generalization of the theorem.
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FIGURE 4.8

The endoreversible engine cycle.

Let us now suppose that the rate of heat flow from the high temperature
reservoir to the system is proportional to the temperature difference
T,— T,. If t, is the time required to transfer an amount Q, of energy,
then

(-0
t,

o, (T,— T,) (4.23)

where o, is the conductance (the product of the thermal conductivity
times the area divided by the thickness of the wall between the hot
reservoir and the working fluid). A similar law holds for the rate of heat
flow to the cold reservoir. Therefore the time required for the two
isothermal strokes of the engine is

_1_ (~Qh)
Gy Th - Tw

t=1,+1, = + - (4.24)
0(.‘ t
We assume the time required for the two adiabatic strokes of the engine to
be negligible relative to (7, + ¢_), as these times are limited by relatively
rapid relaxation times within the working fluid itself. Furthermore the
relaxation times within the working fluid can be shortened by appropriate
design of the piston and cylinder dimensions, internal baffles, and the like.
Now Q,, Q. and the delivered work W are related by the Carnot
efficiency of an engine working between the temperatures 7, and T,, so
that equation 4.24 becomes

t_[l 1 T, 1 1 T,

Zn—nn—r*&z—nn—AW (4.25)
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The power output of the engine is W/¢, and this quantity is to be
maximized with respect to the two as yet undetermined temperatures T,
and 7,. The optimum intermediate temperatures are then found to be

T,=c(T,)”* T,=c(1)” (4.26)
where

[(0,1)'” +(o.T.)"]

c= 4.27
(7 + 07] 2
and the optimum power delivered by the engine is
W Thl/Z _ Tc1/2 2
power = (_t_)max = 0,0, W (428)

Let e, denote the efficiency of such an “endoreversible engine maxi-
mized for power”; for which we find
by =1 —(T,/T,)"” (4.29)
Remarkably, the engine efficiency is not dependent on the conductances
o, and o !
Large power plants are evidently operated close to the criterion for

maximum power output, as Curzon and Ahlborn demonstrate by data on
three power plants, as shown in Table 4.1.

TABLE 4.1
Efficiencies of Power Plants as Compared with the Carnot Efficiency and with
the Efficiency of an Endoreversible Engine Maximized for Power Output (e,,,)."

Power Plant (°C) (°C) (Carnot) &, (observed)
West Thurrock (U.K.) coal fired steam plant ~ 25 565 0.64 0.40 036
CANDU (Canada) PHW nuclear reactor ~25 300 0.48 0.28 0.30
Larderello (Italy) geothermal steam plant 80 250 0.32 0.175 0.16

¢ From Curzon and Ahlborn.

PROBLEMS

4.9-1. Show that the efficiency of an endoreversible engine, maximized for power
output, is always less than &, Plot the former efficiency as a function of the
Carnot efficiency.
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4.9-2. Suppose the conductance o, (= o,) to be such that 1 kW is transferred to
the system (as heat flux) if its temperature is 50 K below that of the high
temperature reservoir. Assuming 7, = 800 K and T, = 300 K, calculate the
maximum power obtainable from an endoreversible engine, and find the tempera-
tures 7,, and 7, for which such an engine should be designed.

4.9-3. Consider an endoreversible engine for which the high temperature reservoir
is boiling water (100°C) and the cold reservoir is at room temperature (taken as
20°C). Assuming the engine is operated at maximum power, what is the ratio of
the amount of heat withdrawn from the high temperature reservoir (per kilowatt
hour of delivered work) to that withdrawn by a Carnot engine? How much heat is
withdrawn by each engine per kilowatt hour of delivered work?

Answer:
Ratio = 1.9

4.9-4. Assume that one cycle of the engine of Problem 4.9-3 takes 20 s and that
the conductance o, = 6, = 100 W/K. How much work is delivered per cycle?
Assuming the “control volume” (i.e., the auxiliary system) is a gas, driven through
a Carnot cycle, plot a T-S diagram of the gas during the cycle. Indicate
numerical values for each vertex of the diagram (note that one value of the
entropy can be assigned arbitrarily).

4-10 OTHER CYCLIC PROCESSES

In addition to Carnot and endoreversible engines, various other engines
are of interest as they conform more or less closely to the actual operation
of commonplace practical engines.

The Otto cycle (or, more precisely, the “air-standard Otto cycle”) is a
rough approximation to the operation of a gasoline engine. The cycle is
shown in Fig. 4.9 in a V-S diagram. The working fluid (a mixture of air
and gasoline vapor in the gasoline engine) is first compressed adiabatically

0 —
|

A V, FIGURE 4.9
V— The Otto cycle.
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(A — B). It 1s then heated at constant volume (B — C); this step crudely
describes the combustion of the gasoline in the gasoline engine. In the
third step of the cycle the working fluid is expanded adiabatically in the
“power stroke” (C — D). Finally the working fluid is cooled isochorically
to its initial state A4.

In a real gasoline engine the working fluid chemically reacts (“burns”)
during the process B — C; so that its mole number changes—an effect
not represented in the Otto cycle. Furthermore the initial adiabatic
compression i1s not quasi-static and therefore is certainly not isentropic.
Nevertheless the idealized air-standard Otto cycle does provide a rough
perspective for the analysis of gasoline engines.

In contrast to the Carnot cycle, the absorption of heat in step B — C of
the idealized Otto cycle does not occur at constant temperature. Therefore
the ideal engine efficiency is different for each infinitesimal step, and the
over-all efficiency of the cycle must be computed by integration of
the Carnot efficiency over the changing temperature. It follows that the
efficiency of the Otto cycle depends upon the particular properties of the
working fluid. It is left to the reader to corroborate that for an ideal gas
with temperature independent heat capacities, the Otto cycle efficiency is

(epmc)

V, <,
€omno = 1- ( 7:;) (4.30)

The ratio V, / V5 1s called the compression ratio of the engine.

The Brayton or Joule cycle consists of two isentropic and two isobaric
steps. It is shown on a P-S diagram in Fig. 4.10. In a working engine air
(and fuel) is compressed adiabatically (4 — B), heated by fuel combus-
tion at constant pressure (B — C), expanded (C — D), and rejected to
the atmosphere. The process D — A occurs outside the engine, and a
fresh charge of air is taken in to repeat the cycle. If the working gas 1s an
ideal gas, with temperature independent heat capacities, the efficiency of a

D C
S
A B
| IE FIGURE 410
Pa p— B The Brayton or Joule cycle.
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Brayton cycle is

P\ o
e, =1~ —”) 431
B o

The air-standard diesel cycle consists of two isentropic processes, alter-
nating with isochoric and isobaric steps. The cycle is represented in Fig.
4.11. After compression of the air and fuel mixture (4 — B), the fuel
combustion occurs at constant pressure ( B — C). The gas is adiabatically
expanded (C — D) and then cooled at constant volume (D — A).

FIGURE 4 11
The air-standard diesel cycle.

PROBLEMS

4.10-1. Assuming that the working gas s a monatomic ideal gas, plot a T-S
diagram for the Otto cycle.

4.10-2. Assuming that the working gas is a simple 1deal gas (with temperature
independent heat capacities), show that the engine efficiency of the Otto cycle is
given by equation 4.30.

4.10-3. Assuming that the working gas is a simple ideal gas (with temperature
independent heat capacities), show that the engine efficiency of the Brayton cycle
is given by equation 4.31.

4.10-4. Assuming that the working gas is a monatomuc ideal gas, plot a 7 S
diagram of the Brayton cycle.

4.10-5. Assuming that the working gas is a monatomuc ideal gas, plot a 7-S
diagram of the air-standard diesel cycle.
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ALTERNATIVE FORMULATIONS
AND

LEGENDRE TRANSFORMATIONS

5-1 THE ENERGY MINIMUM PRINCIPLE

In the preceding chapters we have inferred some of the most evident
and immediate consequences of the principle of maximum entropy. Fur-
ther consequences will lead to a wide range of other useful and fundamen-
tal results. But to facilitate those developments it proves to be useful now
to reconsider the formal aspects of the theory and to note that the same
content can be reformulated in several equivalent mathematical forms.
Each of these alternative formulations is particularly convenient in par-
ticular types of problems, and the art of thermodynamic calculations lies
largely in the selection of the particular theoretical formulation that most
incisively “fits” the given problem. In the appropriate formulation ther-
modynamic problems tend to be remarkably simple; the converse is that
they tend to be remarkably complicated in an inappropriate formalism!

Multiple equivalent formulations also appear in mechanics—Newto-
nian, Lagrangian, and Hamiltonian formalisms are tautologically equiv-
alent. Again certain problems are much more tractable in a Lagrangian
formalism than in a Newtonian formalism, or vice versa. But the dif-
ference in convenience of different formalisms is enormously greater in
thermodynamics. It is for this reason that the general theory of transforma-
tion among equivalent representations is here incorporated as a fundamental
aspect of thermostatistical theory.

In fact we have already considered two equivalent representations— the
energy representation and the entropy representation. But the basic ex-
tremum principle has been formulated only in the entropy representation.
If these two representations are to play parallel roles in the theory we
must find an extremum principle in the energy representation, analogous
to the entropy maximum principle. There is, indeed, such an extremum
principle; the principle of maximum entropy is equivalent to, and can be

131
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The plane
U= U, ™
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x
™~
FIGURE 51

The equilibrium state A4 as a point of maximum S for constant U.

replaced by, a principle of minimum energy. Whereas the entropy maxi-
mum principle characterizes the equilibrium state as having maximum
entropy for given total energy, the energy minimum principle char-
acterizes the equilibrium state as having minimum energy for given total
entropy.

Figure 5.1 shows a section of the thermodynamic configuration space
for a composite system, as discussed in Section 4.1. The axes labeled S
and U correspond to the total entropy and energy of the composite
system, and the axis labeled XV corresponds to a particular extensive
parameter of the first subsystem. Other axes, not shown explicitly in the
figure, are U", X , and other pairs X, X,.

The total energy of the composite system is a constant determined by
the closure condition. The geometrical representation of this closure
condition is the requirement that the state of the system lie on the plane
U= U, in Fig. 5.1. The fundamental equation of the system is repre-
sented by the surface shown, and the representative point of the system
therefore must be on the curve of intersection of the plane and the surface.
If the parameter X" is unconstrained, the equilibrium state is the
particular state that maximizes the entropy along the permitted curve; the
state labeled A in Fig. 5.1.

The alternative representation of the equilibrium state A as a state of
minimum energy for given entropy is illustrated in Fig. 5.2. Through the
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S=5,

FIGURE 5 2
The equilibrium state 4 as a point of minimum U for constant §.

equilibrium point A is passed the plane S = S, which determines a curve
of intersection with the fundamental surface. This curve consists of a
family of states of constant entropy, and the equilibrium state A is the state
that minimizes the energy along this curve.

The equivalence of the entropy maximum and the energy minimum
principles clearly depends upon the fact that the geometrical form of the
fundamental surface is generally as shown in Fig. 5.1 and 5.2. As dis-
cussed in Section 4.1, the form of the surface shown in the figures is
determined by the postulates that dS/dU > 0 and that U 1s a single-val-
ued continuous function of S; these analytic postulates accordingly are
the underlying conditions for the equivalence of the two principles.

To recapitulate, we have made plausible, though we have not yet
proved, that the following two principles are equivalent:

Entropy Maximum Principle. The equilibrium value of any unconstrained
internal parameter is such as to maximize the entropy for the given value of
the total internal energy.

Energy Minimum Principle. The equilibrium value of any unconstrained
internal parameter is such as to minimize the energy for the given value of
the total entropy.
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The proof of the equivalence of the two extremum criteria can be
formulated either as a physical argument or as a mathematical exercise.
We turn first to the physical argument, to demonstrate that if the energy
were nof minimum the entropy could not be maximum in equilibrium,
and inversely.

Assume, then, that the system is in equilibrium but that the energy does
not have its smallest possible value consistent with the given entropy. We
could then withdraw energy from the systea (in the form of work)
maintaining the entropy constant, and we could thereafter return this
energy to the system in the form of heat. The entropy of the system would
increase (dQ = T'dS), and the system would be restored to its original
energy but with an increased entropy. This is inconsistent with the
principle that the initial equilibrium state is the state of maximum
entropy! Hence we are forced to conclude that the original equilibrium
state must have had minimum energy consistent with the prescribed
entropy.

The inverse argument, that minimum energy implies maximum entropy,
is similarly constructed (see Problem 5.1-1).

In a more formal demonstration we assume the entropy maximum

principle
A EAY
-] =0 d <0 51
(GX)L an (8X2)U (1)

where, for clarity, we have written X for X, and where it is implicit that
all other X’s are held constant throughout. Also, for clarity, we tempo-
rarily denote the first derivative (dU/d X) ¢ by P. Then (by equation A.22
of Appendix A)

(%]
oU Xy ( dS
P=|-5) = - =-Tl5<| = .
( )s (iSl) TGX)U 0 (5-2)
oU | x
We conclude that U has an extremum. To classify that extremum as a
maximum, a minimum, or a point of inflection we must study the sign of

the second derivative (92U/dX?)s = (dP/3X). But considering P as a
function of U and X we have

(o)~ (5] (56) 55, +(57). - () 7 + (5.

(5.3)

-)U at P =0 (5.4)
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so that U is a minimum. The inverse argument is identical in form.

As already indicated, the fact that precisely the same situation is
described by the two extremal criteria is analogous to the isoperimetric
problem in geometry. Thus a circle may be characterized either as the two
dimensional figure of maximum area for given perimeter or, alternatively,
as the two dimensional figure of minimum perimeter for given area.

The two alternative extremal criteria that characterize a circle are
completely equivalent, and each applies to every circle. Yet they suggest
two different ways of generating a circle. Suppose we are given a square
and we wish to distort it continuously to generate a circle. We may keep
its area constant and allow its bounding curve to contract as if it were a
rubber band. We thereby generate a circle as the figure of minimum
perimeter for the given area. Alternatively we might keep the perimeter of
the given square constant and allow the area to increase, thereby obtain-
ing a (different) circle, as the figure of maximum area for the given
perimeter. However, after each of these circles is obtained each satisfies
both extremal conditions for its final values of area and perimeter.

The physical situation pertaining to a thermodynamic system is very
closely analogous to the geometrical situation described. Again, any
equilibrium state can be characterized either as a state of maximum
entropy for given energy or as a state of minimum energy for given
entropy. But these two criteria nevertheless suggest two different ways of
attaining equilibrium. As a specific illustration of these two approaches to
equilibrium, consider a piston originally fixed at some point in a closed
cylinder. We are interested in bringing the system to equilibrium without
the constraint on the position of the piston. We can simply remove the
constraint and allow the equilibrium to establish itself spontaneously; the
entropy increases and the energy is maintained constant by the closure
condition. This is the process suggested by the entropy maximum princi-
ple. Alternaiively, we can permit the piston to move very slowly, reversi-



136 Alternative Formulations and Legendre Transformations

bly doing work on an external agent until it has moved to the position
that equalizes the pressure on the two sides. During this process energy is
withdrawn from the system, but its entropy remains constant (the process
is reversible and no heat flows). This is the process suggested by the
energy minimum principle. The vital fact we wish to stress, however, is
that independent of whether the equilibrium is brought about by either of
these two processes, or by any other process, the final equilibrium state in
each case satisfies both extremal conditions.

Finally, we illustrate the energy minimum principle by using it in place
of the entropy maximum principle to solve the problem of thermal
equilibrium, as treated in Section 2.4. We consider a closed composite
system with an internal wall that 1s rigid, impermeable, and diathermal.
Heat is free to flow between the two subsystems, and we wish to find the
equilibrium state. The fundamental equation in the energy representation
is

U= U(l)(S(l), yo, Nl(l)’ ) + U(Z)(S(z), V(Z),Nl(z), ) (5.8)

All volume and mole number parameters are constant and known. The
variables that must be computed are S and S®. Now, despite the fact
that the system is actually closed and that the total energy is fixed, the
equilibrium state can be characterized as the state that would minimize
the energy if energy changes were permitted. The virtual change in total
energy associated with virtual heat fluxes in the two systems is

dU = TVdS™ + TOgs® (5.9)

The energy minimum condition states that dU = 0, subject to the condi-
tion of fixed total entropy:

S® + §® = constant (5.10)
whence
dU = (T — TP)dsM =0 (5.11)
and we conclude that
T®O =T® (5.12)

The energy minimum principle thus provides us with the same condi-
tion of thermal equilibrium as we previously found by using the entropy
maximum principle.

Equation 5.12 is one equation in S and S®. The second equation is
most conveniently taken as equation 5.8, in which the total energy U is
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known and which consequently involves only the two unknown quantities
S™M and S®. Equations 5.8 and 5.12, in principle, permit a fully explicit
solution of the problem.

In a precisely analogous fashion the equilibrium condition for a closed
composite system with an internal moveable adiabatic wall is found to be
equality of the pressure. This conclusion is straightforward in the energy
representation but, as was observed in the last paragraph of Section 2.7, it
is relatively delicate in the entropy representation.

PROBLEMS

5.1-1. Formulate a proof that the energy minimum principle implies the entropy
maximum principle—the “inverse argument” referred to after equation 5.7. That
is, show that if the entropy were not maximum at constant energy then the energy
could not be minimum at constant entropy.

Hint: First show that the permissible increase in entropy in the system can be
exploited to extract heat from a reversible heat source (initially at the same
temperature as the system) and to deposit it in a reversible work source. The
reversible heat source is thereby cooled. Continue the argument.

5.1-2. An adiabatic, impermeable and fixed piston separates a cylinder into two
chambers of volumes V,/4 and 3V /4. Each chamber contains 1 mole of a
monatomic ideal gas. The temperatures are 7, and 7,, the subscripts s and /
referring to the small and large chambers, respectively.

a) The piston is made thermally conductive and moveable, and the system
relaxes to a new equilibrium state, maximizing its entropy while conserving its total
energy. Find this new equilibrium state.

b) Consider a small virtual change in the energy of the system, maintaining the
entropy at the value attained in part (a). To accomplish this physically we can
reimpose the adiabatic constraint and quasistatically displace the piston by
imposition of an external force. Show that the external source of this force must
do work on the system in order to displace the piston in either direction. Hence
the state attained in part (a) is a state of minimum energy at constant entropy.

¢) Reconsider the initial state and specify how equilibrium can be established by
decreasing the energy at constant entropy. Find this equilibrium state.

d) Describe an operation that demonstrates that the equilibrium state attained in
(¢) is a state of maximum entropy at constant energy.

5-2 LEGENDRE TRANSFORMATIONS

In both the energy and entropy representations the extensive parame-
ters play the roles of mathematically independent variables, whereas the
intensive parameters arise as derived concepts. This situation is in direct
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contrast to the practical situation dictated by convenience in the labora-
tory. The experimenter frequently finds that the intensive parameters are
the more easily measured and controlled and therefore is likely to think of
the intensive parameters as operationally independent variables and of the
extensive parameters as operationally derived quantities. The extreme
instance of this situation is provided by the conjugate variables entropy
and temperature. No practical instruments exist for the measurement and
control of entropy, whereas thermometers and thermostats, for the mea-
surement and control of the temperature, are common laboratory
equipment. The question therefore arises as to the possibility of recasting
the mathematical formalism in such a way that intensive parameters will
replace extensive parameters as mathematically independent variables. We
shall see that such a reformulation is, in fact, possible and that it leads to
various other thermodynamic representations.

It is, perhaps, superfluous at this point to stress again that thermody-
namics is logically complete and self-contained within either the entropy
or the energy representations and that the introduction of the transformed
representations is purely a matter of convenience. This is, admittedly, a
convenience without which thermodynamics would be almost unusably
awkward, but in principle it is still only a luxury rather than a logical
necessity.

The purely formal aspects of the problem are as follows. We are given
an equation (the fundamental relation) of the form

Y=Y(X,X,....X) (5.13)
and it is desired to find a method whereby the derivatives

_ay
P= 33 (5.14)

can be considered as independent variables without sacrificing any of the
informational content of the given fundamental relation(5.13). This formal
problem has its counterpart in geometry and in several other fields of
physics. The solution of the problem, employing the mathematical tech-
nique of Legendre transformations, is most intuitive when given its
geometrical interpretation; and it is this geometrical interpretation that we
shall develop in this Section.

For simplicity, we first consider the mathematical case in which the
fundamental relation is a function of only a single independent vari-
able X.

Y = Y(X) (5.15)

Geometrically, the fundamental relation is represented by a curve in a
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X FIGURE 5.3

space (Fig. 5.3) with cartesian coordinates X and Y, and the derivative

)4
P=Zs (5.16)

is the slope of this curve. Now, if we desire to consider P as an
independent variable in place of X, our first impulse might be simply to
eliminate X between equations 5.15 and 5.16, thereby obtaining Y as a
function of P

Y = Y(P) (5.17)

A moment’s reflection indicates, however, that we would sacrifice some of
the mathematical content of the given fundamental relation (5.15) for,
from the geometrical point of view, it is clear that knowledge of Y as a
function of the slope dY/dX would not permit us to reconstruct the curve
Y = Y(X). In fact, each of the displaced curves shown in Fig. 5.4
corresponds equally well to the relation ¥ = Y(P). From the analytical
point of view the relation ¥ = Y(P) is a first-order differential equation,
and its integration gives Y = Y(X) only to within an undetermined
integration constant. Therefore we see that acceptance of Y = Y(P) as a
basic equation in place of Y = Y( X) would involve the sacrifice of some
information originally contained in the fundamental relation. Despite the

X FIGURE 5.4
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FIGURE 5.5

desirability of having P as a mathematically independent variable, this
sacrifice of the informational content of the formalism would be com-
pletely unacceptable.

The practicable solution to the problem is supplied by the duality
between conventional point geometry and the Pluecker line geometry. The
essential concept in line geometry is that a given curve can be represented
equally well either (a) as the envelope of a family of tangent lines (Fig.
5.5), or (b) as the locus of points satisfying the relation Y = Y( X). Any
equation that enables us to construct the family of tangent lines therefore
determines the curve equally as well as the relation Y = Y( X).

Just as every point in the plane is described by the two numbers X and
Y, so every straight line in the plane can be described by the two numbers
P and v, where P is the slope of the line and ¥ is its intercept along the
Y-axis. Then just as a relation Y = Y( X) selects a subset of all possible
points (X, Y), a relation ¢ = {/(P) selects a subset of all possible lines
(P.¥). A knowledge of the intercepts ¢ of the tangent lines as a function
of the slopes P enables us to construct the family of tangent lines and
thence the curve of which they are the envelope. Thus the relation

v=v(P) (5.18)

is completely equivalent to the fundamental relation Y = Y( X). In this
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relation the independent variable is P, so that equation 5.18 provides a
complete and satisfactory solution to the problem. As the relation ¢ =
Y (P) is mathematically equivalent to the relation Y = Y( X), it can also
be considered a fundamental relation; ¥ = Y(X) is a fundamental rela-
tion in the “Y-representation”; whereas ¢ = ¢(P) is a fundamental
relation in the “y-representation.”

The reader is urged at this point actually to draw a reasonable number
of straight lines, of various slopes P and of various Y-intercepts y = — P2,
The relation y = — P2 thereby will be seen to characterize a parabola
(which is more conventionally described as Y = } X?). In y-representation
the fundamental equation of the parabola is Y = — P2, whereas in Y-rep-
resentation the fundamental equation of this same parabola is ¥ = 1 X2

The question now arises as to how we can compute the relation
Y = ¢(P) if we are given the relation Y = Y(X). The appropriate
mathematical operation is known as a Legendre transformation. We
consider a tangent line that goes through the point ( X, Y) and has a slope
P. If the intercept is ¥, we have (see Fig. 5.6)

_Y-y
P-—= (5.19)
or
Y=Y - PX (5.20)

Let us now suppose that we are given the equation

Y = Y(X) (5.21)

(X,Y)

0,

X — FIGURE 5 6
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and by differentiation we find
P = P(X) (5.22)

Then by elimination' of X and Y among equations 5.20, 5.21, and 5.22 we
obtain the desired relation between ¢ and P. The basic identity of the
Legendre transformation is equation 5.20, and this equation can be taken
as the analytic definition of the function . The function ¢ is referred to
as a Legendre transform of Y.

The inverse problem is that of recovering the relation Y = Y( X) if the
relation ¢ = Y (P) is given. We shall see here that the relationship
between ( X, Y) and (P, ¢) is symmetrical with its inverse, except for a
sign in the equation of the Legendre transformation. Taking the differen-
tial of equation 5.20 and recalling that dY = PdX, we find

dy = dY — PdX — XdP

=~ —XdP (5.23)
or
-4
X=" (5.24)

If the two variables  and P are eliminated’ from the given equation
¢ = ¢(P) and from equations 5.24 and 5.20, we recover the relation
Y = Y(X). The symmetry between the Legendre transformation and its
inverse is indicated by the following schematic comparison:

Y =Y(X) ¥ =y(P)
p_ dY Y
dX dp
y=—-PX+Y Y=XP+4y
Elimination of X and Y yields Elimination of P and ¢ yields
¥ ={Y(P) Y = Y(X)

The generahlization of the Legendre transformation to functions of more
than a single independent variable is simple and straightforward. In three
dimensions Y is a function of X, and X, and the fundamental equation
represents a surface. This surface can be considered as the locus of points

'This ehmmauon 1s possible 1f P 1s not independent of X, that 1s, if d2Y/dx? # 0 In the
thermodynamic apphcation this entenon will turn out to be 1dentical to the entenon of stability The
cntenon fails only at the “cntical points.” which are discussed in detail in Chapter 10

2The condition that this be possible 1s that d2¢/dP? + 0, which will, 1in the thermodynamic
application, be guaranteed by the stability of the system under consideration
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satisfying the fundamental equation Y = Y( X,, X;), or it can be consid-
ered as the envelope of tangent planes. A plane can be characterized by its
intercept ¥ on the Y-axis and by the slopes P, and P, of its traces on the
Y — X, and Y — X planes. The fundamental equation then selects from
all possible planes a subset described by ¢ = ¢/( P, P,).

In general the given fundamental relation

= Y(X,, X15.--, X)) (5.25)
represents a hypersurface in a (¢ + 2)-dimensional space with cartesian
coordinates Y, X,, X,,..., X,. The derivative

aY
P = -5}: (526)

is the partial slope of this hypersurface. The hypersurface may be equally
well represented as the locus of points satisfying equation 5.25 or as the
envelope of the tangent hyperplanes. The family of tangent hyperplanes
can be characterized by giving the intercept of a hyperplane, ¢, as a
function of the slopes Py, P;,..., P.. Then

y=Y- Y PX, (5.27)
k

Taking the differential of this equation, we find

dy= -3 X,dP, (5.28)
k
whence
_ 99
~X= 35, (5.29)

A Legendre transformation is effected by eliminating Y and the X, from
Y = Y(X,, Xj,..-, X,), the set of equations 5.26, and equation 5.27. The
inverse transformation is effected by eliminating ¢ and the P, from
Y = y(P, P,,..., P), the set of equations 5.29, and equation 5.27.
Finally, a Legendre transformation may be made only in some (n + 2)-
dimensional subspace of the full (¢t + 2)-dimensional space of the relation
Y = Y(X,, X,,..., X,). Of course the subspace must contain the Y-coor-
dinate but may involve any choice of n + 1 coordinates from the set
Xy, Xp»..., X,. For convenience of notation, we order the coordinates so
that the Legendre transformation is made in the subspace of the first
n + 1 coordinates (and of Y'); the coordinates X, ;, X, .»..--- X are left
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untransformed. Such a partial Legendre transformation is effected merely
by considering the variables X, ,, X, ,,,..., X, as constants in the trans-
formation. The resulting Legendre transform must be denoted by some
explicit notation that indicates which of the independent variables
have participated in the transformation. We employ the notation
Y[P,y, P;,..., P,] to denote the function obtained by making a Leg-
endre transformation with respect to X, X;,..., X, on the function
Y( Xy, Xy ..., X,). Thus Y[ Py, P,,..., P,]is a function of the independent
variables Py, Py,..., P, X,,1,..., X,. The various relations involved in a
partial Legendre transformation and its inverse are indicated in the

following table.

Y=Y(X, X,,..., X))

ay

Pe=7%%,

The partial differentiation denotes
constancy of all the natural varia-
bles of Y other than X, (i.e., of all
X, with j # k)

t
dy =Y P dX,
0

Y{Py,...,Pl=Y - Y P X,
0

Elimination of Y and X,
Xy, ..., X, from equations 5.30,
5.33, and the first » + 1 equations
of 531 yields the transformed
fundamental relation.

Y[F,, P, ..., P,] = function of
Py, Py .. )P X, 15 X, (5.30
aY[P,,...,P,]
(5.31)
3Y[Py,.... P,

The partial differentiation denotes
constancy of all the natural varia-
bles of Y(F,,...,P,) other than
that with respect to which the
differentiation is being carried out.

dY[P,,...,P,]

14
L Pdx,

= —-Y X.dP, +
0 n+ 1
(5.32)

"

Y=Y[P,...,P]+ Y. XP,
0

(5.33)
Elimination of Y{[P,,...,P,] and
Py, P,..., P, from equations
5.30, 5.33, and the first n + 1
equations of 5.31 yields the origi-

nal fundamental relation.

In this section we have divorced the mathematical aspects of Legendre
transformations from the physical applications. Before proceeding to the
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thermodynamic applications in the succeeding sections of this chapter, it
may be of interest to indicate very briefly the application of the formalism
to Lagrangian and Hamiltonian mechanics, which perhaps may be a more
familiar field of physics than thermodynamics. The Lagrangian principle
guarantees that a particular function, the Lagrangian, completely char-
acterizes the dynamics of a mechanical system. The Lagrangian is a
function of 2r variables, r of which are generalized coordinates and r of
which are generalized velocities. Thus the equation

L:L(Ul’UZ""’”r’ql’qZ""7qf') (534)

plays the role of a fundamental relation. The generalized momenta are
defined as derivatives of the Lagrangian function

oL
dv,,

If it is desired to replace the velocities by the momenta as independent
variables, we must make a partial Legendre transformation with respect to
the velocities. We thereby introduce a new function, called the Hamilto-
nian, defined by?

P, (5.35)

(-H)=L - X’QP,(U,( (5.36)

A complete dynamical formalism can then be based on the new funda-
mental relation

H=H(P,P),....,P,q1,45,---,4,) (5.37)

r

Furthermore, by equation 5.31 the derivative of H with respect to P, is
the velocity v,, which is one of the Hamiltonian dynamical equations.
Thus, if an equation of the form 5.34 is considered as a dynamical
fundamental equation in the Lagrangian representation, the Hamiltonian
equation (5.37) is the equivalent fundamental equation expressed in the
Hamiltonian representation.

PROBLEMS

5.2-1. The equation y = x2/10 describes a parabola.

a) Find the equation of this parabola in the “line geometry representation”
¥ = ¢(P).

b) On a sheet of graph paper (covering the range roughly from x = —15 to
x = +15 and from y = —25 to y = +25) draw straight lines with slopes P = (,

3In our usage the Legendre transform of the Lagrangian 1s the negutve Hamiltoman Actually, the
accepted mathematical convention agrees with the usage in mechanics, and the function —¢ would be
called the Legendre transform of ¥
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+0.5, £1, +£2, +3 and with intercepts iy satisfying the relationship ¢ = {/(P) as
found in part (a). (Drawing each straight line is facilitated by calculating its
intercepts on the x-axis and on the y-axis.)

5.2-2. Let y = de®~

a) Find ¢(P).

b) Calculate the inverse Legendre transform of (P) and corroborate that this
result is y(x).

¢) Taking 4 = 2 and B = 0.5, draw a family of tangent lines in accordance with
the result found in (@), and check that the tangent curve goes through the
expected points at x = 0, 1, and 2.

5-3 THERMODYNAMIC POTENTIALS

The application of the preceding formalism to thermodynamics is
self-evident. The fundamental relation Y = Y( X, X,, ...) can be inter-
preted as the energy-language fundamental relation U = U(S,
Xy Xy, ooy X)) or U= U(S,V, N, N,, ...). The derivatives Py, P, ...
correspond to the intensive parameters 7, — P, p;, pt,, ... . The Legendre
transformed functions are called thermodynamic potentials, and we now
specifically define several of the most common of them. In Chapter 6 we
continue the discussion of these functions by deriving extremum princi-
ples for each potential, indicating the intuitive significance of each, and
discussing its particular role in thermodynamic theory. But for the mo-
ment we concern ourselves merely with the formal aspects of the defini-
tions of the several particular functions.

The Helmholtz potential or the Helmholtz free energy, is the partial
Legendre transform of U that replaces the entropy by the temperature as
the independent vanable. The internationally adopted symbol for the
Helmbholtz potential is F. The natural variables of the Helmholtz potential
are T,V, N, N,, ... . That is, the functional relation F =
F(T,V, N, N,, ...) constitutes a fundamental relation. In the systematic
notation introduced in Section 5.2

F=U[T] (5.38)

The full relationship between the energy representation and the
Helmbholtz representation, is summarized in the following schematic com-
parison:

U= US,V,N, N, ...) F=FT,V,N,N,, ...) (5.39)
T = dU/dS —-S = 9F/dT (5.40)
F=U-TS U=F+TS (5.41)

Elimination of U and § yields| Elimination of F and T yields
F=FKT,V,N,N,, ...) U= U(S,V,N,, N,, ...)
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The complete differential dF is
dF = —SdT — PdV + p, dN, + p,dN, + --- (5.42)

The enthalpy is that partial Legendre transform of U that replaces the
volume by the pressure as an independent variable. Following the recom-
mendations of the International Unions of Physics and of Chemistry, and
in agreement with almost universal usage, we adopt the symbol H for the
enthalpy. The natural variables of this potential are S, P, N;, N,, ... and

H=U|[P] (5.43)

The schematic representation of the relationship of the energy and en-
thalpy representations is as follows:

U=U(S,V,N, N,, ...) H = H(S,P,N,N,, ...) (5.44)
—P=9U/dV V=d0dH/IP (5.45)
H=U+PV U=H-PV (5.46)
Elimination of U and ¥V yields | Elimination of H and P yields
H = H(S,P,N,N,, ...) U= US,V,N, N, ...)

Particular attention is called to the inversion of the signs in equations
5.45 and 5.46, resulting from the fact that — P is the intensive parameter
associated with V. The complete differential dH is

dH = TdS + VdP + p, dN, + p,dN, + - -- (5.47)

The third of the common Legendre transforms of the energy is the
Gibbs potential, or Gibbs free energy. This potential is the Legendre
transform that simultaneously replaces the entropy by the temperature
and the volume by the pressure as independent variables. The standard

notation is G, and the natural variables are T, P, N, N,, ... . We thus
have
G=U|T, P] (5.48)
and
U=U(S7VaNlaN2a”') G=G(T,P,N1,N2,...) (5'49)
T=209dU/dS -8 =9dG/oT (5.50)
—~P=09U/aV V=4aG/dP (5.51)
G=U-TS+ PV U=G+ TS - PV (5.52)
Elimination of U, S, and V yields | Elimination of G, T, and P yields
G =G(T,P,N,N,, ...) U=US,V,N,N,, ...)
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The complete diflerential dG is
dG = —8SdT + VdP + p;dN; + p,dN, + --- (5.53)

A thermodynamic potential which arises naturally in statistical me-
chanics is the grand canonical potential, U[T, p]. For this potential we
have

U=U(S,V,N) U[T, p] = function of 7, V, and p (5.54)
T=09U/dS —8 = JU|[T, pl/oT (5.55)
p=0dU/IN —N = JUI[T, p]/dn (5.56)
UlT,pl=U—- TS — pN U=U[T,p]+ TS+ pN (557
Elimination of Elimination of
U, S, and N yields U[T, p], T, and p yields
U[T, p] as a functionof T, V, p U= U(S,V,N)
and
dU|[T,p] = —SdT — PdV — Ndp (5.58)

Other possible transforms of the energy for a simple system, which are
used only infrequently and which consequently are unnamed, are U[y,],
UlLP, ], UIT, p,, p,], and so forth. The complete Legendre transform is
UIT, P, py, by, - .., 12, ). The fact that U(S,V, N, N,,..., N)) is a homoge-
neous first-order function of its arguments causes this latter function to
vanish identically. For

U[Ta Pal"‘l,'--,“r] =U—-TS + PV—P‘INI _p‘ZNZ_ RIS —“rN

r

(5.59)
which, by the Euler relation (3.6), is identically zero

U[T,P,Pq,—--,“r] EO (5'60)

PROBLEMS

5.3-1. Find the fundamental equation of a monatomic ideal gas in the Helmholtz
representation, in the enthalpy representation, and in the Gibbs representation.
Assume the fundamental equation computed in Section 3.4. In each case find the
equations of state by differentiation of the fundamental equation.

5.3-2. Find the fundamental equation of the ideal van der Waals fluid (Section
3.5) in the Helmholtz representation.

Perform an inverse Legendre transform on the Helmholtz potential and show
that the fundamental equation in the energy representation is recovered.
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5.3-3. Find the fundamental equation of electromagnetic radiation in the Helm-
holtz representation. Calculate the “thermal” and “mechanical” equations of
state and corroborate that they agree with those given in Section 3.6.

5.3-4%. Justify the following recipe for obtaining a plot of F(V') from a plot of
G (P) (the common dependent variables T and N being notationally suppressed
for convenience).

P \ 4

(1) At a chosen value of P draw the tangent line A.
(2) Draw horizontal lines B and C through the intersections of A with P = 1 and
P=0.
(3) Draw the 45° line D as shown and project the intersection of B and D onto
the line C to obtain the point F(V).
Hint: ldentify the magnitude of the two vertical distances indicated in the G
versus P diagram, and also the vertical separation of lines B and C.
Note that the units of F and V are determined by the chosen units of G and P.
Explain.
Give the analogous construction for at least one other pair of potentials.
Note that G(P) is drawn as a concave function (i.e., negative curvature) and
show that this is equivalent to the statement that x> 0.

5.3-5. From the first acceptable fundamental equation in Problem 1.10-1 calcu-
late the fundamental equation in Gibbs representation. Calculate «(T7, P),
k+(T, P), and ¢, (T, P) by differentiation of G.

5.3-6. From the second acceptable fundamental equation in Problem 1.10-1
calculate the fundamental equation in enthalpy representation. Calculate
V(S, P, N) by differentiation.

5.3-7. The enthalpy of a particular system is

P
= 21 —_—
H=AS°N ln( Po)

“Adapted from H E Stanley, Introduction to Phuse Trunsitions and Criticul Phernomena (Oxford
University Press, 1971)
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where A is a positive constant. Calculate the molar heat capacity at constant
volume ¢, as a function of 7 and P.

5.3-8. In Chapter 15 it is shown by a statistical mechanical calculation that the
fundamental equation of a system of N “atoms” each of which can exist in an
atomic state with energy &, or in an atomic state with energy ¢, (and in no other
state) is

= — NkgT"(e P + ¢ Bea)

Here kj is Boltzmann’s constant and 8 = 1/k ;7. Show that the fundamental
equation of this system, in entropy representation, is

£4/ €,
S = NRln(le_)
YY
where
U- Nsu
Y= ——
Ned_U

Hint: Introduce B = (kpT)"', and show first that U= F + BIF/df =
HBF)/3B. Also, for definiteness, assume g, < g, and note that Nk, = NR where N
is the number of atoms and N is the number of moles.

5.3-9. Show, for the two-level system of Problem 5.3-8, that as the temperature
increases from zero to infinity the energy increases from Nsu to N(su + &,)/2.
Thus, at zero temperature all atoms are in their “ground state” (with energy ¢,),
and at infinite temperature the atoms are equally likely to be in either state.
Energies higher than N(¢, + £4)/2 are inaccessible in thermal equilibrium! (This
upper bound on the energy is a consequence of the unphysical oversimplification
of the model; it will be discussed again in Section 15.3.)

Show that the Helmholtz potential of a mixture of simple ideal gases is the sum of
the Helmholtz potentials of each individual gas:

5.3-10.
a) Show that the Helmholtz potential of a mixture of simple ideal gases is the
sum of the Helmholtz potentials of each individual gas:

F(T,V,N,,...,N)= F(T,V,N,) + --- +F(T,V,N,)

Recall the fundamental equation of the mixture, as given in equation 3.40.
An analogous additivity does not hold for any other potential expressed in terms of
its natural variables.

5.3-11. A mixture of two monatomic ideal gases is contained in a volume V at
temperature 7. The mole numbers are N; and N,. Calculate the chemical
potentials u; and p,. Recall Problems 5.3-1 and 5.3-10.

Assuming the system to be in contact with a reservoir of given 7 and p,,
through a diathermal wall permeable to the first component but not to the second,
calculate the pressure in the system.
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5.3-12. A system obeys the fundamental relation
(s — 50)° = Avu?

Calculate the Gibbs potential G(T, P, N).
5.3-13. For a particular system 1t is found that
u=(3)Pv
and
P = AvT*

Find a fundamental equation, the molar Gibbs potential, and the Helmholtz
potential for this system.

§.3-14. For a particular system (of 1 mole) the quantity (v + a)f is known to be
a function of the temperature only (= Y(T)). Here v is the molar volume, f is
the molar Helmholtz potential, a is a constant, and Y(T') denotes an unspecified
function of temperature. It is also known that the molar heat capacity ¢, is

¢, = b(v)T?

where b(v) is an unspecified function of v.

a) Evaluate Y(T) and b(v).

b) The system is to be taken from an initial state (Tg, vy) to a final state (7}, v/).
A thermal reservoir of temperature 7, is available, as is a reversible work source.
What is the maximum work that can be delivered to the reversible work source?
(Note that the answer may involve constants unevaluated by the stated condi-
tions, but that the answer should be fully explicit otherwise.)

5-4 GENERALIZED MASSIEU FUNCTIONS

Whereas the most common functions definable in terms of Legendre
transformations are those mentioned in Section 5.3, another set can be
defined by performing the Legendre transformation on the entropy rather
than on the energy. That is, the fundamental relation in the form § =
S(U,V, N,, N,, ...) can be taken as the relation on which the transforma-
tion is performed. Such Legendre transforms of the entropy were invented
by Massieu in 1869 and actually predated the transforms of the energy
introduced by Gibbs in 1875. We refer to the transforms of the entropy as
Massieu functions, as distinguished from the thermodynamic potentials
transformed from the energy. The Massieu functions will turn out to be
particularly useful in the theory of irreversible thermodynamics, and they
also arise naturally in statistical mechanics and in the theory of thermal
fluctuations. Three representative Massieu functions are S[1/7], in which
the internal energy is replaced by the reciprocal temperature as indepen-
dent variable; S{P/T], in which the volume is replaced by P/T as
independent variable; and S{1/T, P/T], in which both replacements are
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made simultaneously. Clearly

1 1, F
s[—T_=s— U= ~7 (s.61)
P1_ P
S[T‘ =S-T1v (5.62)
and
1 P 1 P G
S[T’?_‘S_TU—?'V__? (5.63)

Thus, of the three, only S[P/T] is not trivially related to one of the
previously introduced thermodynamic potentials. For this function

S =8S(U,V,N,N,, ...) |S[P/T] = function of
U P/T,N, N,,...,(5.64)
P/T = dS/dV -V =209S[P/T)/A(P/T) (5.65)
S[P/T]=S—-(P/THV S=S[P/T]+ (P/T)V (5.66)
Elimination of Elimination of
S and V yields S[P/T] S[P/T]and P/T yields
as a function of U, P/T, N, N,, ... S=8(U,V,N, N,, ...)

and
dS[P/T] = (1/T)dU - Vd(P/T) —(p,/T) dN, — “—7% dn, ...

(5.67)

Other Massieu functions may be invented and analyzed by the reader as a
particular need for them arises.

PROBLEMS

5.4-1. Find the fundamental equation of a monatomic ideal gas in the representa-

tion
P p]

S[ T'T
Find the equations of state by differentiation of this fundamental equation.
5.4-2. Find the fundamental equation of electromagnetic radiation (Section 3.6)
a) in the representation S[1/7T]
b) in the representation S[P/T]
5.4-3. Find the fundamental equation of the ideal van der Waals fluid in the

representation S[1/T). Show that S[1/T] is equal to — F/T (recall that F was
computed in Problem 5.3-2).
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THE EXTREMUM PRINCIPLE

IN THE LEGENDRE

TRANSFORMED REPRESENTATIONS

6-1 THE MINIMUM PRINCIPLES FOR THE POTENTIALS

We have seen that the Legendre transformation permits expression of
the fundamental equation in terms of a set of independent variables
chosen to be particularly convenient for a given problem. Clearly, how-
ever, the advantage of being able to write the fundamental equation in
various representations would be lost if the extremum principle were not
itself expressible in those representations. We are concerned, therefore,
with the reformulation of the basic extremum principle in forms ap-
propriate to the Legendre transformed representations.

For definiteness consider a composite system in contact with a thermal
reservoir. Suppose further that some internal constraint has been removed.
We seek the mathematical condition that will permit us to predict the
equilibrium state. For this purpose we first review the solution of the
problem by the energy minimum principle.

In the equilibrium state the total energy of the composite system-plus-
reservolr is minimum:

diU+U)=0 (6.1)
and

d*(U+ U")=d*U>0 (6.2)
subject to the isentropic condition

d(S+S)=0 (6.3)

18
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The quantity d?U” has been put equal to zero in equation 6.2 because
d2U" is a sum of products of the form

d*U" R
X oX; ax;dX;
which vanish for a reservoir (the coefficient varying as the reciprocal of the
mole number of the reservoir).

The other closure conditions depend upon the particular form of the
internal constraints in the composite system. If the internal wall is
movable and impermeable, we have

ANV =dNP =d(V®P + V?) =0  (forall j) (6.4)

whereas, if the internal wall is rigid and permeable to the & th component,
we have

d(Nk(l) + Nk(Z)) = de(l) = dN}(Z) =dV O =4qdr®d =9 (j + k)
(6.5)

These equations suffice to determine the equilibrium state.

The differential dU in equation 6.1 involves the terms TVdS‘V +
T@dS® which arise from heat flux among the subsystems and the
reservoir, and terms such as —PMdV® — pAgy® and pldND +
p? dN®, which arise from processes within the composite system. The
terms TMdS® + T@4S™ combine with the term dU’ = T'dS" in equa-
tion 6.1 to yield

TOLESD 4 TAOGSD 4 Trds™ = THGSH + T@Gs@ — T’d(S“’ + §@)
=0 (6.6)

whence
TO=T®=T7" (6.7)

Thus one evident aspect of the final equilibrium state is the fact that the
reservoir maintains a constancy of temperature throughout the system.
The remaining conditions of equilibrium naturally depend upon the
specific form of the internal constraints in the composite system.

To this point we have merely reviewed the application of the energy
minimum principle to the composite system (the subsystem plus the
reservoir). We are finally ready to recast equations 6.1 and 6.2 into the
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language of another representation. We rewrite equation 6.1
d(U+ U")=dU+ T'dS"=0 (6.8)
or, by equation 6.3
dU—-T'dS =0 (6.9)
or, further, since 7’ is a constant
d(U-T'S)=0 (6.10)

Similarly, since 7’ is a constant and S is an independent variable,
equation 6.2 implies’

dU=d*(U—-T'S)>0 (6.11)

Thus the quantity (U — 7'S) is minimum in the equilibrium state. Now
the quantity U — T'S is suggestive by its form of the Helmholtz potential
U — TS. We are therefore led to examine further the extremum properties
of the quantity (U — T'S) and to ask how these may be related to the
extremum properties of the Helmholtz potential. We have seen that an
evident feature of the equilibrium is that the temperature of the composite
system (i.e., of each of its subsystems) is equal to 7". If we accept that
part of the solution, we can immediately restrict our search for the
equilibrium state among the manifold of states for which T = 7’. But
over this manifold of states U — TS is identical to U — T'S. Then we can
write equation 6.10 as

dF =d(U—-TS)=0 (6.12)
subject to the auxiliary condition that
T=T" (6.13)

That 1s, the equilibrium state minimizes the Helmholtz potential, not
absolutely, but over the manifold of states for which 7= T'". We thus
arrive at the equilibrium condition in the Helmholtz potential representa-
tion.

Helmholtz Potential Minimum Principle. The equilibrium value of any
unconstrained nternal parameter 1n a system in diathermal contact with a
heat reservoir minimizes the Helmholtz potential over the manifold of states
for which T = T".

142U represents the second-order terms in the expansion of {7 in powers of dS, the linear term
—T’S in equation 611 contnbutes to the expansion only in first order (see equation A9 of
Appendix A)
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The intuitive significance of this principle is clearly evident in equations
6.8 through 6.10. The energy of the system plus the reservoir is, of course,
mimmum. But the statement that the Helmholtz potential of the system
alone is minimum is just another way of saying this, for dF = d(U — TS),
and the term d(—T7S) actually represents the change in energy of the
reservoir (since 7= 7" and —dS = dS"). It is now a simple matter to
extend the foregoing considerations to the other common representations.

Consider a composite system in which all subsystems are in contact
with a common pressure reservoir through walls nonrestrictive with re-
spect to volume. We further assume that some internal constraint within
the composite system has been removed. The first condition of equi-
librium can be written

d(U+ U)=dU—-PdV'=dU+ P'dV =0 (6.14)
or
d(U+PV)=0 (6.15)
Accepting the evident condition that P = P’, we can write
dH=d(U+ PV)=20 (6.16)
subject to the auxiliary restriction
P=P (6.17)
Furthermore, since P’ is a constant and V' is an independent variable
d*H=d U+ PV)=d*U>0 (6.18)
so that the extremum is a minimum.

Enthalpy Minimum Principle. The equilibrium value of any unconstrained
internal parameter in a system in contact with a pressure reservoir minimizes
the enthalpy over the manifold of states of constant pressure (equal to that of
the pressure reservoir).

Finally, consider a system in simultaneous contact with a thermal and a
pressure reservoir. Again

dU+U)=dU—-TdS +PdV=20 (6.19)
Accepting the evident conditions that 7 = T' and P = P’, we can write

dG =d(U—= TS + PV) =0 (6.20)
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subject to the auxiliary restrictions
T=T" P=P' (6.21)
Again
d*G=d* (U-T'S+PV)=d*’U>0 (6.22)
We thus obtain the equilibrium condition in the Gibbs representation.

Gibbs Potential Minimum Principle. The equilibrium value of any uncon-
strained internal parameter in a system in contact with a thermal and a
pressure reservoir minimizes the Gibbs potential at constant temperature and
pressure (equal to those of the respective reservoirs).

If the system is characterized by other extensive parameters in addition
to the volume and the mole numbers the analysis is identical in form and
the general result is now clear:

The General Minimum Principle for Legendre Transforms of the Energy.
The equilibrium value of any unconstrained internal parameter in a system in
contact with a set of reservoirs (with intensive parameters P, P],...)
minimizes the thermodynamic potential U[ P, P,,...] at constant P, P,, ...
(equal tg P{, Pj,...).

6-2 THE HELMHOLTZ POTENTIAL

For a composite system in thermal contact with a thermal reservoir the
equilibrium state minimizes the Helmholtz potential over the manifold of
states of constant temperature (equal to that of the reservoir). In practice
many processes are carried out in rigid vessels with diathermal walls, so
that the ambient atmosphere acts as a thermal reservoir; for these the
Helmholtz potential representation is admirably suited.

The Helmholtz potential is a natural function of the variables
T,V, N, N,,....The condition that T is constant reduces the number of
variables in the problem, and F effectively becomes a function only of the
variables V and N, N,,... . This is in marked contrast to the manner in
which constancy of T would have to be handled in the energy representa-
tion: there U would be a function of S,V, N;, N,,... but the auxiliary
condition 7 = 7" would imply a relation among these variables. Particu-
larly in the absence of explicit knowledge of the equation of state
T = T(S,V, N) this auxiliary restriction would lead to considerable awk-
wardness in the analytic procedures in the energy representation.

As an illustration of the use of the Helmholtz potential we first consider
a composite system composed of two simple systems separated by a
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Piston

“Hotplate”, 7"

FIGURE 6.1

movable, adiabatic, impermeable wall (such as a solid insulating piston).
The subsystems are each in thermal contact with a thermal reservoir of
temperature 7" (Fig. 6.1). The problem, then, is to predict the volumes V'V
and V® of the two subsystems. We write

PO(T VO NO NO, )= POT VO, NO NP,...) (6.23)

This is one equation involving the two variables V¥ and V®; all other
arguments are constant. The closure condition

Vv + V@ = ¥, aconstant (6.24)

provides the other required equation, permitting explicit solution for ¥
and VO,

In the energy representation we would also have found equality of the
pressures, as in equation 6.23, but the pressures would be functions of the
entropies, volumes, and mole numbers. We would then require the equa-
tions of state to relate the entropies to the temperature and the volumes;
the two simultaneous equations, 6.23 and 6.24, would be replaced by four.

Although this reduction of four equations to two may seem to be a
modest achievement, such a reduction is a very great convenience in more
complex situations. Perhaps of even greater conceptual value is the fact
that the Helmholtz representation permits us to focus our thought
processes exclusively on the subsystem of interest, relegating the reservoir
only to an implicit role. And finally, for technical mathematical reasons to
be elaborated in Chapter 16, statistical mechanical calculations are enor-
mously simpler in Helmholtz representations, permitting calculations that
would otherwise be totally intractable.

For a system in contact with a thermal reservoir the Helmholtz poten-
tial can be interpreted as the available work at constant temperature.
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Consider a system that interacts with a reversible work source while being
in thermal contact with a thermal reservoir. In a reversible process the
work input to the reversible work source is equal to the decrease in energy
of the system and the reservoir

dWews = —dU — dU" = —dU — T"dS" (6.25)
= —dU + T'dS = —d(U - T'S) (6.26)
= —dF (6.27)

Thus the work delivered in a reversible process, by a system in contact with a
thermal reservoir, is equal to the decrease in the Helmholtz potential of the
systepr. The Helmholtz potential is often referred to as the Helmholtz
“free energy,” though the term available work at constant temperature
would be less subject to misinterpretation.

Example 1

A cylinder contains an internal piston on each side of which is one mole of a
monatomic ideal gas. The walls of the cylinder are diathermal, and the system is
immersed in a large bath of liquid (a heat reservoir) at temperature 0°C. The
initial volumes of the two gaseous subsystems (on either side of the piston) are 10
liters and 1 liter, respectively. The piston is now moved reversibly, so that the
final volumes are 6 liters and 5 liters, respectively. How much work is delivered?

Solution
As the reader has shown in Problem 5.3-1, the fundamental equation of a
monatomic ideal gas in the Helmholtz potential representation is

F, TV?v({nN)!
= ””{ NoRT, 1"[( 5 %l%)

At constant T and N this is simply
F = constant — NRT InV
The change in Helmholtz potential is
AF= —NRT[In6 +In5 —In10 — In1}= —NRTIn3 = —2.5kJ

Thus 2.5 kJ of work are delivered in this process.

It is interesting to note that all of the energy comes from the thermal reservoir.
The energy of a monatomic ideal gas is simply 3 NRT and therefore it is constant
at constant temperature. The fact that we withdraw heat from the temperature
reservoir and deliver it entirely as work to the reversible work source does not,
however, violate the Carmot efficiency principle because the gaseous subsystems
are not left in their initial state. Despite the fact that the energy of these
subsystems remains constant, their entropy increases.
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PROBLEMS

6.2-1. Calculate the pressure on each side of the internal piston in Example 1, for
arbitrary position of the piston. By integration then calculate the work done in
Example 1 and corroborate the result there obtained.
6.2-2. Two ideal van der Waals fluids are contained in a cylinder, separated by an
internal moveable piston. There is one mole of each fluid, and the two fluids have
the same values of the van der Waals constants b and c; the respective values of
the van der Waals constant “a” are a; and a,. The entire system is in contact
with a thermal reservoir of temperature T. Calculate the Helmholtz potential of
the composite system as a function of T and of the total volume V. If the total
volume is doubled (while allowing the internal piston to adjust), what is the work
done by the system? Recall Problem 5.3-2.
6.2-3. Two subsystems are contained within a cylinder and are separated by an
internal piston. Each subsystem is a mixture of one mole of helium gas and one
mole of neon gas (each to be considered as a monatomic ideal gas). The piston is
in the center of the cylinder, each subsystem occupying a volume of 10 liters. The
walls of the cylinder are diathermal, and the system is in contact with a thermal
reservoir at a temperature of 100°C. The piston is permeable to helium but
impermeable to neon.

Recalling (from Problem 5.3-10) that the Helmholtz potential of a mixture of
simple ideal gases is the sum of the individual Helmholtz potentials (each
expressed as a function of temperature and volume), show that in the present case

T 3 T A

F= NTOfO ~ >NRTIn T~ NlRTln( A
VN, VN,
~NORTIn——2=2 — NPRT In .
VONZ(I) VONZ(Z)

where Ty, f,, Vi, and N, are attributes of a standard state (recall Problem 5.3-1),
N is the total mole number, NS is the mole number of neon (component 2) in
subsystem 1, and ¥ and ¥® are the volumes of subsystems 1 and 2, respec-
tively.

How much work is required to push the piston to such a position that the
volumes of the subsystems are § liters and 15 liters? Carry out the calculation

both by calculating the change in F and by a direct integration (as in Problem
6.2-1).

Answer:
work = RT In(3) = 893 )

6-3 THE ENTHALPY: THE
JOULE-THOMSON OR “THROTTLING” PROCESS

F‘oF a composite system in interaction with a pressure reservoir the
equilibrium state minimizes the enthalpy over the manifold of states of
constant pressure. The enthalpy representation would be appropriate to
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processes carried out in adiabatically insulated cylinders fitted with adia-
batically insulated pistons subject externally to atmospheric pressure, but
this 1s not a very common experimental design. In processes carried out in
open vessels, such as in the exercises commonly performed in an elemen-
tary chemistry laboratory, the ambient atmosphere acts as a pressure
reservoir, but it also acts as a thermal reservoir: for the analysis of such
processes only the Gibbs representation invokes the full power of Legendre
transformations. Nevertheless, there are particular situations uniquely
adapted to the enthalpy representation, as we shall see shortly.

More immediately evident is the interpretation of the enthalpy as a
“potential for heat.” From the differedtial form

dH = TdS + VdP + p,dN, + p,dN, + - -- (6.28)

it is evident that for a system in contact with a pressure reservoir and
enclosed by impermeable walls

dH = dQ (where P, N,, N,, ... are constant) (6.29)

That is, heat added to a system at constant pressure and at constant values of
all the remaining extensive parameters (other than S and V') appears as an
increase in the enthalpy.

This statement may be compared to an analogous relation for the
energy

dU=dQ  (where V, N, N,,... are constant) (6.30)

and similar results for any Legendre transform in which the entropy is not
among the transformed variables.

Because heating of a system is so frequently done while the system is
maintained at constant pressure by the ambient atmosphere, the enthalpy
is generally useful in discussion of heat transfers. The enthalpy accord-
ingly is sometimes referred to as the “heat content” of the system (but it
should be stressed again that “heat” refers to a mode of energy flux
rather than to an attribute of a state of a thermodynamic system).

To illustrate the significance of the enthalpy as a “potential for heat,”
suppose that a system is to be maintained at constant pressure and its
volume is to be changed from V, to V,. We desire to compute the heat
absorbed by the system. As the pressure is constant, the heat flux is equal
to the change in the enthalpy

Q,.,=[do=H-H, (6.31)

If we were to know the fundamental equation

H = H(S,P,N) (6.32)
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then, by differentiation

dH
V= 2P - V(S, P,N) (6.33)
and we could eliminate the entropy to find H as a function of V, P, and
N. Then

Q,. ;= H(V,,P,N)— H(V,,P